• Title/Summary/Keyword: Kupffer -and endothelial cells

Search Result 11, Processing Time 0.023 seconds

NO Formation of the PMA and LPS-activated Rat Kupffer- and Endothelial Cells in vitro (In Vitro에서 PMA와 LPS로 활성화된 흰쥐 간내 Kupffer-와 Endothelial 세포에서의 NO 형성에 관한 연구)

  • 김기성
    • Biomolecules & Therapeutics
    • /
    • v.3 no.3
    • /
    • pp.188-191
    • /
    • 1995
  • The Present study was undertaken to indicate the major source of NO by liver cells in vitro. Even at early stages of induction or low LPS concentrations, NO was produced at high rates by LPS(Lipopolysaccharide) on the isolated rat kupffer cells. PMA(phorbol 12-myristate 13-acetate) induced NO formation at low rates in the same cells. IFN-${\gamma}$ (Interferon-${\gamma}$) alone had not induced NO formation but it stimulated the effects of LPS. Calcium ionophore A23187 caused no stimulatory effect. It suggests that LPS has especially strong NO inducer on the kupffer cells and its mechanism is related to those on macrophage in other organs. In other nonparenchymal liver cells, sinusoidal endothelial cells were not stimulated to produce NO either by inducers of aortic endothelium(A23187, ATP and ADP) or by effectors of macrophages(LPS, IFN-${\gamma}$. This results suggest that rat liver kupffer cells appear to be the major source of NO by liver cells in vitro. But in vivo, liver endothelial cells may still be capable of producing NO. Furthermore, kupffer cells may produce factors that facilitate NO production by the endothelial cells.

  • PDF

Studies on Ultrastructure and Several Phosphatase Activity in the Non-parenchymal Cell of the Developing Rat Liver (발생과정중 흰쥐 간 Non-parenchymal Cell의 미세구조 및 수종 Phosphatase의 활성에 관하여)

  • Deung, Y.K.;You, K.H.;Chung, M.H.;Seo, Y.H.
    • Applied Microscopy
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 1982
  • A number of recent ultrastructural studies have shown marked differences between the two lining cell types in adult liver sinusoids, endothelial cells and Kupffer cells. In the present study, the ultrastructural features and electron microscopic cytochemistry of sinusoidal lining cells in the fetal liver were studied through fetal period to neonate in the rat. At fetal period, the sinusoid, which contains various blood component, in lined by the endothelial cells, the Kupffer cells and the fat storing cells that located in the space of Disse. As gestation proceeded, these eel's are arranged as adult liver sinusoids. The sinusoidal wall appears to be discontinuous with open fenestration between endothelial cells, but no basal lamina can observed. It seems to be morphologically and functionally distinct at the early gestation between the endothelial cells and the Kupffer cells, the latter showing marked phagocytized activity. The fat storing cells, which contain several fat droplets, are located in the space of Disse. Ultrastructural localization of the acid and alkaline phosphatase activity were noted on the sinusoidal lining cells.

  • PDF

Some Observations on the fine Structure of Suncus Murinus Liver (Suncus Murinus 간장의 미세구조적 관찰)

  • Kim, Kyoung-Wook;Shin, Young-Chul
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.41-52
    • /
    • 1993
  • This study was designed to observe the ultrastructural characteristics of hepatocytes, endothelial cells, Kupffer cells and Ito cells in the liver of Suncus Murinus. The specimens were processed for electron microscopy, following the immersing in the Karnovsky fixative for 8 hrs and 1% osmium tetroxide for 2 hrs. Hepatocytes contained large number of lipid droplets and large mitochondria. Spaces between the hepatocytes were narrow and in some area were irregular in contours with long and slender microvilli of the hepatocytes. Endothelial cells may contain lysosomes as Kupffer cells do. Bile canaliculi were relatively wide and easily seen in the lobule. Bile ductules located in the space of Disse were formed by the hepatocytes and small cells with or without lipid droplets. The results suggest that the Suncus Murinus liver shows some ultrastructural characteristics of aquatic animal livers, endothelial and Kupffer cells may be the same one only in the different functional states, and the bile ductule may be partly formed by the Ito cell.

  • PDF

Role of Kupffer Cells in the Vasoregulatory Gene Expression during Hepatic Ischemia/Reperfusion

  • Kim, Yong-Hyuk;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2004
  • Hepatic microcirculatory failure is a major component of reperfusion injury in the liver. Recent data provided some evidence that endothelium-derived vasoconstrictors and vasodilators may be functionally important to the control of the total hepatic blood flow under these conditions of circulatory failure. Since Kupffer cells provide signals that regulate the hepatic response in ischemia/reperfusion (I/R), the aim of this study was to investigate the role of Kupffer cells in the I/R-induced imbalance of vasoregulatory gene expression. Rats were subjected to 60 min hepatic ischemia, followed by 5 h of reperfusion. The Kupffer cells were inactivated by gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 1 day prior to ischemia. Liver samples were obtained 5 hrs after reperfusion for RT-PCR analysis of the mRNA for genes of interest: endothelin-1 (ET-1), its receptors $ET_A and ET_B$, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1). ET-1 mRNA expression was increased by I/R. mRNA levels for $ET_A$ receptors showed no change, whereas $ET_B$ receptor transcripts increased in the I/R group. The increases in ET-1 and $ET_B$ mRNA were not prevented by the $GdCI_3$ pretreatment. The mRNA levels for iNOS and eNOS significantly increased within the I/R group with no significant difference between the I/R group and the $GdCl_3$-treated I/R group. HO-1 mRNA expression significantly increased in the I/R group and this increase was attenuated by $GdCI_3$. In conclusion, we have demonstrated that an imbalance in hepatic vasoregulatory gene expression occurs during I/R. Our findings suggest that the activation of Kupffer cells is not required for I/R-induced hepatic microvascular dysfunction.

Rotations between Erythroblasts and Kupffer Cells in Human Fetal Hepatic Erythropoiesis - Trasmission and Scanning Electron Microscopic Observation (태아 간 적혈구형성에서 별큰포식세포의 적혈구모세포섬형성 - 투과 및 주사전자현미경적 관찰)

  • Lee, Won-Bok;Shin, Do-Shik;Kim, Kyung-Yong
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.43-56
    • /
    • 1999
  • The relationship between intravascular erythroblasts and Kupffer cells in the human fetal liver from 11 to 20 week gestation was studied ultrastructurally. The walls of the developing sinusoids consisted of two cell types devoid of basal lamina, the nonfenestrasted endothelial cells and Kupffer cells. Kupffer cells examined were easily identified by their content of phagosmes and their morphological features, and partially proliferated by mitotic division which was different way of proliferation from adult. Some extruded nuclei of acidophilic erythroblasts were trapped within Kupffer cells which exhibited various stages of intracellular digestion of the nuclei. During high activity of human fetal hepatic erythropoiesis, Kupffer cells were found in association with developing erythrob-lasts, which was similar with erythroblastic islands. The developing erythroblasts were partially surrounded by multilaminated membrane system of the Kupffer cell consisting erythroblastic island, or in contact with Kupffer cell via cytoptasmic processes in the sinu-soidal lumen. The presence of these islands was confirmed by transmission and scanning electron microscopic study. The results demonstrate that Kupffer cells in fetal heaptic erythropoiesis phagocytized expelled nuclei and contributed to erythropoiesis mechanically and physiologically by the hypertrophy and the formation of erythroblastic islands.

  • PDF

Ultrastructure of virus particles in the liver of piglets infected with porcine enterovirus serotype 3 (Enterovirus 감염 돼지의 간에서 virus의 형태학적 관찰)

  • Shin, Tae-kyun;Lee, Cha-soo;Huh, Min-do
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.207-210
    • /
    • 1992
  • Oral infection of colostrum-deprived, neonatal piglets with porcine enterovirus serotype 3 can result in hepatic lesions with a short incubation period. In the thin section of the affected liver, crystalline arrays of virus particles characteristic of picornavirus were identified in the sinusoid endothelial cells and Kupffer cells. There were also cytoplasmic aggregates of electron- dense, virus-like particles in the hepatocytes. These findings suggest that porcine enterovirus serotype 3 has hepatotropism as well as neurotropism.

  • PDF

Hepatic Tissue Changes by the 1,3-Dichloropropanol Inhalation in the Rat (1, 3-Dichloropropanol 흡입에 의한 랫드간의 조직변화에 관한 연구)

  • Kim Sung-Hwa;Park O-Sung;Lee Sung-Bae;Choi Jong-Yun;Kwon Hyo Jung;Son Sek-Woo;Park Il-Kwon;Lee Kyoung-Youl;Son Hwa-Young;Lee Mee-Young;Lee Guen-Jwa;Kim Hyeon-Young;Lee Kang-Yi
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.141-150
    • /
    • 2005
  • 1,3-Dichloro-2-propanol (1,3-DCP) is known as chloride chemicals and causes severe hepatotoxic agent. The Ito cells and Kupffer's cells of the liver in the 5 old F344 Rats were exposed to 1,3-DCP gas chamber for 6 hours/ a day, 5 days/ a week, and 13 weeks, in the 0, 5, 20, 80 ppm, respectively. After then the body weights, liver weights, and relative liver weight to body weight were measured, and the hepatic tissues were prepared by the routine and Immunostain method, and observed by the LM, and EM. In the results, there were severe body weight decrease (p<0.05) in the 80 ppm of the male and female rats. The relative liver weights to the body weight were increased relate with exposed 1,3-DCP concentration (P<0.001). Inflammatory cells, infiltration was observed at the perivascular area in the 20 ppm exposed group, and bilirubin pigment infiltration, bile duct hyperplasia, inflammation hepatocytic necrosis, fibrosis were observed in the 80 ppm exposure group. In the 80 ppm exposure group, disarrangement of the endothelial cells, erythrocytes and hepatic cell fragment in the Disse space and numerous migration macrophages were observed in the necrotic area by EM observation. In the immunostained hepatic tissues positive stained ED1 cells were extremely increased (P<0.05) in central vein area, but ED2 was weakly positive immunostained in the 80 ppm exposed group. Immunostained desmin was observed in the Ito cell. It was no difference in the low and medium exposed group but it was typical increase in the necrotic area. In conclusion, These results suggest that NOAEL of 1,3-DCP may be 5 ppm in rats and the Immunostained of desmin, ED1 and ED2 positive cells activated in the inflammatory liver were related to the exposure volume and density. The increase of the Ito cells were related to the severe phagocytosis of the Kupffer's cells.

Ultrastructural Alterations of Rabbit Liver after Overdose of Nitrate (질산염과잉투여(窒酸鹽過剩投與)에 의(依)한 간장(肝臟)의 변화(變化)에 관한 전자현미경적연구(電子顯微鏡的硏究))

  • Kim, Soon Bok;Lee, Cha Soo
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 1976
  • In order to know the morphological changes of liver in nitrate poisoning, the ultrastructural studies were carried out on the rabbit liver after potassium nitrate was administered orally at lethal dose, in single treatment, as acute case and at two different levels. 1.0 and 0.5g/kg of body weight daily for 43 and 60 days as chronic case, respectively, The results were summarized as followings: 1. In the hepatic cells of acute case, mitochondria were swollen, disappearance of cristae and variable in shape. Dilatation of rough endoplasmic reticulum and vacuoles containing degenerated cell organells were observed. Glyogen particles were decreased in number. Degenerated Kupffer cells were often seen in acute case. 2. In the hepatic cells of chronic case, there were increase of smooth endoplasmic reticulum, marked enlargement of rough endcplasmic reticulum, detachment of membrane bound ribosome and some rough endoplasmic reticulum changed into smooth endoplasmic reticulum. Secondary lysosome, abundant glycogen paricles and myelin-figure structures were also observed in the cytoplasm of the hepatic cells. The endothelial cells were proliferated in the area of the necrotic cells.

  • PDF

Study on Morphological Changes and TUNEL Reaction of Apoptotic Cells in Mouse Liver by Apoptosis Induction

  • Kwak, Soo-Dong;Yang, Je-Hoon;Koh, Phil-Ok;Seo, Deuk-Lok;Kang, Chung-Boo
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 2002
  • We investigated the morphological changes and TUNEL reaction of apoptotic cells in the liver of D-galactosamine (20 mg/mouse) and lipopolysaccharide (5 $\mu\textrm{g}$/mouse)-treated 30 mice (BALB/c), and in additioa also of apoptotic cells in kidney and spleen. The livers and other some organs of mice at 6, 12, 24, 48 and 72 hrs after treatment were collected and were fixed with 10% neutral formalin and paraffin sections were stained with hematoxylin-eosin or terminal deoxynucleotidly transferase-mediated dUTP nick end labeling (TUNEL) method. Morphological changes in apoptotic hepatocytes were chondensation of nuclei and density of cytoplasms, then the margination and pyknosis of chromatin, the formation of half-moon- or horse-shoe- or ship-like shapes of condensed chromatin mass, lastly formation of apoptotic bodies, disappearance of nuclear envelopes, decrease of stainability, then lysis and disappearance of apoptotic bodies. TUNEL positive reactions of hepatocytes were appeared first moderate in uncondensed hepatocytes, severe in condensed hepatocytes, moderate in chromatin-marginated hepatocytes. These reactions also were appeared moderate in hepatocytes with half-moon- or horse-shoe- or ship-like pyknotic chromatin mass or apoptotic bodies, and mild or negative in hepatocytes with lysed apoptotic bodies or with disappeared nuclear envelopes. Consequently these results suggested that TUNEL positive reactions of hepatocytes appeared at more early stages than appearance of chromatin condensation and disappeared at more early stage than disappearance of histological findings of apoptosis. We also confirmed that the differentiation of apoptotic cells from normal healthy cells of Kupffer cells and vascular endothelial cells in liver, reticular cells and lymphocytes in spleen and epithelial cells of tubules and ducts in kidney was impossible in H-E preparations but was possible in TUNEL preparations.

  • PDF

Mettl14 mutation restrains liver regeneration by attenuating mitogens derived from non-parenchymal liver cells

  • Insook, Yang;Seung Yeon, Oh;Suin, Jang;Il Yong, Kim;You Me, Sung;Je Kyung, Seong
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.633-638
    • /
    • 2022
  • Liver regeneration is a well-known systemic homeostatic phenomenon. The N6-methyladenosine (m6A) modification pathway has been associated with liver regeneration and hepatocellular carcinoma. m6A methyltransferases, such as methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14), are involved in the hepatocyte-specific-regenerative pathway. To illustrate the role of METTL14, secreted from non-parenchymal liver cells, in the initiation phase of liver regeneration, we performed 70% partial hepatectomy (PH) in Mettl14 heterozygous (HET) and wild-type (WT) mice. Next, we analyzed the ratio of liver weight to body weight and the expression of mitogenic stimulators derived from non-parenchymal liver cells. Furthermore, we evaluated the expression of cell cycle-related genes and the hepatocyte proliferation rate via MKI67-immunostaining. During regeneration after PH, the weight ratio was lower in Mettl14 HET mice compared to WT mice. The expressions of hepatocyte growth factor (HGF) and tumor necrosis factor (TNF)-α, mitogens derived from non-parenchymal liver cells that stimulate the cell cycle, as well as the expressions of cyclin B1 and D1, which regulate the cell cycle, and the number of MKI67-positive cells, which indicate proliferative hepatocyte in the late G1-M phase, were significantly reduced in Mettl14 HET mice 72 h after PH. Our findings demonstrate that global Mettl14 mutation may interrupt the homeostasis of liver regeneration after an acute injury like PH by restraining certain mitogens, such as HGF and TNF-α, derived from sinusoidal endothelial cells, stellate cells, and Kupffer cells. These results provide new insights into the role of METTL14 in the clinical treatment strategies of liver disease.