• 제목/요약/키워드: Kum-River

Search Result 113, Processing Time 0.016 seconds

Depositional Environments and Characteristics of Surface Sediments in the Nearshore and Offshore off the Mid-Western Coast of the Korean Peninsula (한반도 중서부 근 ${\cdot}$ 외해의 표층 퇴적물 특성과 퇴적환경)

  • Oh, Jae-Kyung;Kum, Byung-Chul
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • In order to elucidate sedimentation processes and depositional environments in transitional area between continental shelf and coastal zone, sedimentologic study has been done with 84 surface sediments sampled in nearshore/offshore off the mid-western coast of the Korean Peninsula for 3 years (1996${\sim}$1999). The surface sediment can be classified into 4 facies (gravelly sand, sand, silty sand and sandy silt). Mean grain size, sorting, skewenss and kurtosis varies -0.39${\sim}7.82{\Phi}$, 0.36${\sim}4.68{\Phi}$, -0.38${\sim}$0.86, -1.56${\sim}$3.43, respectively. The textural parameters show a finer-grained and poorly-sorted trend shoreward, northward and southward from the central part of the study area. The positively-skewed distribution and relationship of each textural parameters indicate a tide-dominated depositional environment. According to C/M diagram, there are 3 different domains (mode A, B, C) of sediment transport mode. The northern part is characterized by bedload transport (mode A) and represents co-influence of wave and tide, whereas domain C in the southern part is controlled by uniform suspension transport (mode C), correlating with sandy-silt area. In the broad middle area, transport processes are complex (the mixture of bedload, graded suspension and uniform suspension; mode B). Hence, the subdivision depositional environments of this study area may be classified by 3 depositional environments dependent on the interplay of sediment supplies from river, relict sediments and hydrologic conditions. In results, the nearshore and offshore areas are thus characterized as a mixing zone between coastal terrigenous sediments and relict sediments in the continental shelf by complex processes (tide, wave and river flow). These sedimentation processes play an important role in producing distinct sedimentologic features in the transitional zone linking coastal and shelfal areas.

  • PDF

Estimation and assessment of baseflow at an ungauged watershed according to landuse change (토지이용변화에 따른 미계측 유역의 기저유출량 산정 및 평가)

  • Lee, Ji Min;Shin, Yongchun;Park, Youn Shik;Kum, Donghyuk;Lim, Kyoung Jae;Lee, Seung Oh;Kim, Hungsoo;Jung, Younghun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2014
  • Baseflow gives a significant contribution to stream function in the regions where climatic characteristics are seasonally distinct. In this regard, variable baseflow can make it difficult to maintain a stable water supply, as well as causing disruption to the stream ecosystem. Changes in land use can affect both the direct flow and baseflow of a stream, and consequently, most other components of the hydrologic cycle. Baseflow estimation depends on the observed streamflow in gauge watersheds, but accurate predictions of streamflow through modeling can be useful in determining baseflow data for ungauged watersheds. Accordingly, the objectives of this study are to 1) improve predictions of SWAT by applying the alpha factor estimated using RECESS for calibration; 2) estimate baseflow in an ungauged watershed using the WHAT system; and 3) evaluate the effects of changes in land use on baseflow characteristics. These objectives were implemented in the Gapcheon watershed, as an ungauged watershed in South Korea. The results show that the alpha factor estimated using RECESS in SWAT calibration improves the prediction for streamflow, and, in particular, recessions in the baseflow. Also, the changes in land use in the Gapcheon watershed leads to no significant difference in annual baseflow between comparable periods, regardless of precipitation, but does lead to differences in the seasonal characteristics observed for the temporal distribution of baseflow. Therefore, the Guem River, into which the stream from the Gapcheon watershed flows, requires strategic seasonal variability predictions of baseflow due to changes in land use within the region.

Studies on the Life History of Bacciger harengulae (Bacciger harengulae의 생활사에 관한 연구)

  • KIM Young-Gill;CHUN Seh-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.449-470
    • /
    • 1984
  • The cercaria of Bacciger herengulae which is parasitized on the gonad of Solen strictus was investigated in order to reveal its entire life history. The area covered for the study was in the vicinity sea of Naechodo, the estuary of the Kum river in the western coast of Korea during the period of 1980-1983. Morphology and development as well as infection rates of sporocyst and cercaria within Solen strictus were examined. For accomplishing the objectives of this study, an artificial infection experiment and some investigations on the second intermediate host, the final host and the growing stages were also studied in both laboratory and natural habitat of Solen strictus. According to the study, it was revealed that the first intermediate hosts were Meretrix lusoria, Solen strictus, Tapes japonica and Laternula limicola, the second intermediate host was Palaemon (Exopalaemon) carinicauda and the final hosts were Konosirus punctatus and Harengula zunasi. A mature sporocyst which was found in the gonad of Solen strictus was $4.0-4.3{\times}0.2-0.21\;mm$ insize, and the cercaia with 27 pairs of setae, each seta consisting of 6 tufts, was $270{\times}147{\mu}m$ in body size and $550{\times}52{\mu}m$ in tail size. Oral sucker($52{\times}42{\mu}m$), pharynx, vental sucker and two testese were obviously seen within the cercaria. The excretory vesicles of cercaria were in V-shape and the flame cell were formula was expressed as 2[(3+3)+(3+3)]=24. The infection of cercaria in the first intermediate host, Solen strictus, was found throughout the year regardlless of the water temperature, and its mean infection rate was $9.67\%$ during the study period. The infection rate fluctuated with temperature, the highest being $28.0\%\;at\;28.0^{\circ}C$ water temperature in July and the lowest $2.4\%\;at\;19.5^{\circ}C$ in October, and it increased in proportion to the shell length on the host. But cercaria was not detected at below 4.0 cm in size of the host. Mature cercariae were found 6 months from May to October when water temperature was above $19.5^{\circ}C$. On the other hand, when water temperature was below $19.5^{\circ}C$, only immature cercariae and sporocysts were found. The cercariae were active for 35 hours and survived for 71 hours at $20^{\circ}C$, and 29 and 34 hours at $25^{\circ}C$ respectively, whereas the cercariae were inactive at less than $20^{\circ}C$ in water temperature. Cercaria, from Solen strictus, approached shrimp of 1-3 cm in body length as its second host. Then, it began to intrude in to the muscle of shrimp after 2-3 hours. The infected cercaria formed cyst after 7-8 hours, and became mature metacercaria. $420{\times}310{\mu}m$ in size, 15 days afer infection. The infection rate of metaceria to shrimp in the laboratory was highest, at $25^{\circ}C$ being $61\%$ and at $20^{\circ}C\;17%$. The infection rate of metacearia in shrimp was highest in the first abdominal segment, followed by cephalothorax, the second, and fifth abdominal segments, and in that order. Also, the infection rate of metacercaria in wild shrimp was high $9.6-11.1\%$ at $26.5^{\circ}C$ in June, and low $1.56-2.5\%$ at $28-29.5^{\circ}C$ from July to August. The infected shrimp with metacercaria was experimentally fed to Konosirus punctatus in the laboratory in order to know its final host. The metacercaria developed into the adult worm, $440-520{\times}310-360{\mu}m$ in size, within the intestine of Konosirus punctatus 20 days after infection. The adult worm was oval shape and $20-24{\times}11-20{\mu}m$ in size. The infection rate of adult worm to Konosirus punctatus and Harengula zunasi ranged 87.3 to $100\%$, the mean being $95.2\%$, regardless of the body length of their hosts. The infection rate was $100\%$ in June and July, but it decreased in September and October. The size and body structure of the trematode observed during the present study were well agreed with those ievestigated by Yamaguti(1938), thus, it may be concluded that the adult worm it identified as Bacciger harengulae.

  • PDF