• Title/Summary/Keyword: Kuhnil Gabapentin

Search Result 2, Processing Time 0.015 seconds

Bioequivalence of Kuhnil GabapentinTM Capsule 300 mg to NeurontinTM Capsule 300 mg (Gabapentin 300 mg) (뉴론틴 캡슐 300밀리그람(가바펜틴 300 mg)에 대한 건일가바펜틴 캡슐 300밀리그람의 생물학적동등성)

  • Cho, Hea-Young;Kang, Hyun-Ah;Park, Eun-Ja;Oh, Se-Won;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • Gabapentin is an antiepileptic drug that is structurally similar to ${\gamma}-aminobutyric$ acid (GABA), but does not interact with the GABA receptor. It does not bind significantly to plasma proteins, and is excreted to unchanged form in the urine. The purpose of the present study was to evaluate the bioequivalence of two gabapentin capsules, $Neurontin^{TM}$ capsule 300 mg (Pfizer Pharm. Co., Ltd.) and Kuhnil $Gabapentin^{TM}$ capsule 300 mg (Kuhnil Pharm. Co., Ltd), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of gabapentin from the two gabapentin formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty six healthy male subjects, $22.46{\pm}1.86$ years in age and $67.64{\pm}7.24$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After a single capsule containing 300 mg as gabapentin was orally administered, blood samples were taken at predetermined time intervals and the concentrations of gabapentin in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Neurontin^{TM}$ capsule 300 mg, were -2.03, -0.43 and 4.29% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 $(e.g.,\;log\;0.89{\sim}log\;1.09\;and\;log\;0.91{\sim}log\;1.09$ for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Kuhnil $Gabapentin^{TM}$ capsule 300 mg was bioequivalent to $Neurontin^{TM}$ capsule 300 mg.

Preparation and Dissolution Characteristics of A Gastro-Retentive Tablet System Containing Gabapentin (가바펜틴을 함유한 위체류성 정제의 제조 및 용출 평가)

  • You, Kwang-Hee;Lee, Pung-Sok;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.269-273
    • /
    • 2009
  • The objective of this investigation was to develop a gastro-retentive(GR) dosage form of gabapentin and was to evaluate of its dissolution characteristics. GR tablet consists of expandable core tablet matrix and semi-permeable membrane coating. Poloxamer 407 and sodium bicarbonate were used to prepare the core matrix. Polyvinly acetate dispersion (Kollicoat $SR30D^{(R)}$) and polyvinyl alcohol-polyethylene glycol copolymer ((Kollicoat $IR^{(R)}$)) were employed to form the semi-permeable membrane. The GR tablets significantly expanded up to fivefold in simulated gastrointestinal fluids with no apparent damage of the coating membrane over 12 hours. Also, the swelling rate was controllable with the amount of sodium bicarbonate. The drug release was observed to be substantially sustained based on coating level. The release rate of gabapentin from the GR tablet was gradually slowed down as the coasting amount was increased. The gabapentin GR tablet with 8% coating level showed a pseudo-zero order release kinetics over 12 hours. These results suggest that this swellable GR tablet system having semi-permeable membrane coating can be applicable for hydrophilic drug substances like gabapentin.