• Title/Summary/Keyword: Kriging technique

Search Result 120, Processing Time 0.022 seconds

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method (KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Wn;Choi, Joo-Ho;Won, Jun-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.602-607
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional RBDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

  • PDF

PREDICTION OF UNMEASURED PET DATA USING SPATIAL INTERPOLATION METHODS IN AGRICULTURAL REGION

  • Ju-Young;Krishinamurshy Ganeshi
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2004
  • This paper describes the use of spatial interpolation for estimating seasonal crop potential evapotranspiration (PET) and irrigation water requirement in unmeasured evaporation gage stations within Edwards Aquifer, Texas using GIS. The Edwards Aquifer area has insufficient data with short observed records and rare gage stations, then, the investigation of data for determining of irrigation water requirement is difficult. This research shows that spatial interpolation techniques can be used for creating more accurate PET data in unmeasured region, because PET data are important parameter to estimate irrigation water requirement. Recently, many researchers are investigating intensively these techniques based upon mathematical and statistical theories. Especially, three techniques have well been used: Inverse Distance Weighting (IDW), spline, and kriging (simple, ordinary and universal). In conclusion, the result of this study (Table 1) shows the kriging interpolation technique is found to be the best method for prediction of unmeasured PET in Edwards aquifer, Texas.

  • PDF

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

BLADE PLANFORM OPTIMIZATION FOR HSI NOISE REDUCTION OF HELICOPTER (헬리콥터의 고속충격소음 감소를 위한 블레이드 평면형상 최적화)

  • Chae, Sang-Hyun;Yang, Choong-Mo;Jung, Shin-Kyu;Aoyama, Takashi;Obayashi, Shigeru;Yee, Kwang-Jung
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The objective of this research is to design blade planform to reduce high speed impulsive(HSI) noise from a non-lifting helicopter rotor using CFD method and optimization techniques. As for the aero-acoustic analysis, CFD technique for aerodynamic analysis and Kirchhoff's method for the acoustic analysis were used. As for the optimization method, Kriging-based genetic algorithm(GA) model as a high-fidelity optimization method was chosen. Design variables and constraints are determined for arbitrary blade planform. The result shows that the optimized blade planform with high swept-back and taper ratio can reduce HSI noise by suppressing generation of the strong shock wave on blade surface and propagation of the noise to the farfield flow region.

Optimization of a Gate Valve using Design of Experiments and the Kriging Based Approximation Model (실험계획법과 크리깅 근사모델에 의한 게이트밸브 최적화)

  • Kang, Jung-Ho;Kang, Jin;Park, Young-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of this study is an optimization of gate valve made by forging method instead of welding method. In this study, we propose an optimal shape design to improve the mechanical efficiency of gate valve. In order to optimize more efficiently and reliably, the meta-modeling technique has been developed to solve such a complex problems combined with the DACE (Design and Analysis of Computer Experiments). The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Also, we prove reliability of the DACE model's application to gate valve by computer simulations using FEM(Finite Element Method).

Shape Optimization of Cylindrical Film-Cooling Hole Using Kriging Method (크리깅 기법을 이용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2729-2732
    • /
    • 2008
  • Cylindrical film-cooling hole is formulated numerically and optimized to enhance film-cooling effectiveness. The Kriging method is used an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid and heat transfer with shear stress transport model. The hole length-to-diameter ratio and injection angle are chosen as design variables and spatially averaged film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points obtained by Latin Hypercube Sampling for two design variables. Optimum shape shows the film-cooling effectiveness increased.

  • PDF

Design Exploration of High-Lift Airfoil Using Kriging Model and Data Mining Technique

  • Kanazaki, Masahiro;Yamamoto, Kazuomi;Tanaka, Kentaro;Jeong, Shin-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.28-36
    • /
    • 2007
  • A multi-objective design exploration for a three-element airfoil consisted of a slat, a main wing, and a flap was carried out. The lift curve improvement is important to design high-lift system, thus design has to be performed with considered multi-angle. The objective functions considered here are to maximize the lift coefficient at landing and near stall conditions simultaneously. Kriging surrogate model which was constructed based on several sample designs is introduced. The solution space was explored based on the maximization of Expected Improvement (EI) value corresponding to objective functions on the Krigingmodels. The improvement of the model and the exploration of the optimum can be advanced at the same time by maximizing EI value. In this study, a total of 90 sample points are evaluated using the Reynolds averaged Navier-Stokes simulation(RANS) for the construction of the Kriging model. In order to obtain the information of the design space, two data mining techniques are applied to design result. One is functional Analysis of Variance(ANOVA) which can show quantitative information and the other is Self-Organizing Map(SOM) which can show qualitative information.

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.