본 논문은 Flush Air Data Sensing(FADS) 시스템의 방빙에 요구되는 열량을 예측하였다. 설계 초기 단계에서 효과적으로 요구 열량을 예측하기 위해 handbook 기법을 적용하였다. 이를 위해 비행환경에 따른 대표 물리량들을 입력하면 handbook 기법의 수식을 통해 열량을 예측하는 프로그램을 개발하였다. 이때 예측 값의 신뢰도를 높이기 위하여 handbook 기법에서 핵심적인 변수인 충돌효율계수를 CFD 해석을 통해 계산해 내었다. 액적 충돌 판정을 효과적으로 수행하기 위해 Kriging 기법을 적용하여 물체 형상에 대한 등고면 DB를 구축하였다. 또한 액적 궤적 예측을 위해 마찬가지로 Kriging 기법을 적용하여 속도장 DB를 구축하였다.
The objective of this research is to design blade planform to reduce high speed impulsive(HSI) noise from a non-lifting helicopter rotor using CFD method and optimization techniques. As for the aero-acoustic analysis, CFD technique for aerodynamic analysis and Kirchhoff's method for the acoustic analysis were used. As for the optimization method, Kriging-based genetic algorithm(GA) model as a high-fidelity optimization method was chosen. Design variables and constraints are determined for arbitrary blade planform. The result shows that the optimized blade planform with high swept-back and taper ratio can reduce HSI noise by suppressing generation of the strong shock wave on blade surface and propagation of the noise to the farfield flow region.
Recently, the engineering designer of injection mould has become more and more dependent on the CAE. In the design factors of injection mould, the shrinkage rate should be considered as one of the important performances to produce the reliable products. therefore the shrinkage rate can be mostly calculated by the MoldFlow and Pro-engineering. in the design process. However it is not easy to predict the shrinkage rate of a plastic injection mold in its design process because the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. In this study, the surrogate models, DACE model, based on the Kriging in order to optimize the shrinkage rate of electric microwave oven window is used in lieu of the original models, facilitating design optimization.
A lot of data which are used in environment analysis of air pollution have characteristics that are distributed continuously in space. In this point, the collected data value such as precipitation, temperature, altitude, pollution density, PM10 have spatial aspect. When geostatistical data analysis are needed, acquisition of the value in every point is the best way, however, it is impossible because of the costs and time. Therefore, it is necessary to estimate the unknown values at unsampled locations based on observations. In this study, spatial interpolation method such as local trend surface model, IDW(inverse distance weighted), RBF(radial basis function), Kriging were applied to PM10 annual average concentration of Seoul in 2005 and the accuracy was evaluated. For evaluation of interpolation accuracy, range of estimated value, RMSE, average error were analyzed with observation data. The Kriging and RBF methods had the higher accuracy than others.
This study is to illustrate the usefulness of Kriging Dimension Reduction Method(KDRM), which is to construct probability distribution of response function in the presence of the physical uncertainty of input variables. DRM has recently received increased attention due to its sensitivity-free nature and efficiency that considerable accuracy is obtained with only a few number of analyses. However, the DRM has a number of drawbacks such as instability and inaccuracy for functions with increased nonlinearity. As a remedy, Kriging interpolation technique is incorporated which is known as more accurate for nonlinear functions. The KDRM is applied and compared with MCS methods in a compression coil spring design problem. The effectiveness and accuracy of this method is verified.
Approximate optimization has become popular in engineering field such as MDO and Crash analysis which is time consuming. To accomplish efficient approximate optimization, accuracy of approximate model is very important. As surrogate model, Kriging have been widely used approximating highly nonlinear system . Because Kriging employs interpolation method, it is adequate for deterministic computer simulation. Because there are no random errors and measurement errors in deterministic computer simulation, instead of classical DOE ,space filling experiment design which fills uniformly design space should be applied. In this work, various space filling designs such as maximin distance design, maximum entropy design are reviewed. And new design improving maximum entropy design is suggested and compared.
센서스 단위의 인구자료는 기초적인 인문사회 자료로 행정구역 단위로 요약되어 공간분석에 시용된다. 정밀한 인구 분포를 추정하기 위해 기존의 연구에서는 위성영상과 회귀분석 모형을 이용하였다. 하지만 회귀식에 의한 추정치는 공간자료의 공간적자기상관과 잔차 때문에 정확도에 있어 한계가 있었다. 본 연구는 회귀모형과 회귀모형에서 추출된 잔차에 대해 공간적자기상관을 고려하도록 크리깅 보간하는 RK모형(Regression Kriging Model)을 이용하여 인구분포의 추정 정확도를 향상하였다. RK모형을 적용하여 서울시의 4개구를 대상으로 사례분석을 하였으며, 모형의 효율성을 검증하기 위해 회귀분석만을 이용한 예측 결과와 RK모형을 이용한 예측 결과를 서로 비교하였다. 비교한 결과로 상관관계 계수 평균제곱근 오차, G 통계량 수치에서 RK모형의 추정 정확도가 기존의 회귀모형에 비해 높게 나온 것을 확인할수 있었다. 향후 정확한 인구추정을 위해 RK모형이 많이 활용될 수 있을 것이다.
3D 점 데이터는 높은 정확성을 가진 사물의 표면 정보 데이터로 다양한 분야에서 사용되고 있으며, 특히 지리학에서 지형 파악과 분석에 많이 사용되고 있다. 일반적으로 3D 점 데이터의 Gridding 과정을 거치게 되는데 이는 불연속적인 점 데이터를 일정한 좌표 값으로 만드는 과정으로 긴 실행 시간과 높은 비용이 필요하다. 특히 Gridding 과정 중 보간 작업을 위해서 Kriging이 높은 정확성으로 주목받고 있지만 처리과정이 복잡하고 연산이 많아 처리속도가 상대적으로 느리기 때문에 많이 사용되지 않고 있다. 본 논문에서는 Gridding을 고성능으로 처리하기위해 Kriging 연산 과정을 병렬화했으며 격자 자료구조를 MapReduce 패러다임에 맞게 변형하여 Kriging에 적용하였다. 실험은 항공 LiDAR 데이터 약 1.6백만 개와 4.3백만 개의 점 데이터를 이용해서 제안한 MapReduce 구조에 적용하였고, 그 결과 3대의 이기종 클러스터에서 전체 실행시간이 순차적 프로그램에 비해 최대 3.4배 단축하였다.
In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM(Finite Element Method) and BEM(Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta -modeling technique has been developed for solving such a complex problems combined with the DACE(Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building approximation models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty -six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging model of a train suspension. After each Kriging model is constructed, multi -objective optimal solutions are achieved by using a nonlinear programming method called SQP(Sequential Quadratic Programming).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.