• Title/Summary/Keyword: Kriging기법

Search Result 254, Processing Time 0.024 seconds

Uncertainty Analysis of Soft Ground Using Geostatistical Kriging Method (지구통계학 크리깅 기법을 이용한 연약지반의 불확실성 분석)

  • Yoon Gil-Lim;Lee Kang-Woon;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.5-17
    • /
    • 2005
  • Spatial uncertainty of Busan marine clay ground, which commonly occurs during site investigation testing, data analysis and transformation modeling, has been described. In this paper geotechnical uncertainty of shear strength indicator $N_k$ has been quantified in both horizontal direction and vertical direction using geostatistical Kriging method. Most of soil data used are from 25 boring tests, 75 laboratory tests, 124 field vane tests and 25 cone penetration tests (CPT). CPT-$N_k$ data for undrained shear strength determination, which are the most important properties in geotechnical design stages, have been analysed. Comparison between cone factor from conventional CPT-based method and that of geostatistical method shows that geostatistical Kriging method is an ideal tool to quantify the spatial variability of uncertainty from self-correlation of soil property of interest, and can be recommended to identify the spatial distribution of consolidation .md shear strength of soils at any sites concerned.

Improvement of the Design Space Feasibility Using the Response Surface and Kriging Method (반응면 기법과 크리깅 기법을 이용한 설계공간의 타당성 향상)

  • Ku, Yo-Cheon;Jeon, Yong-Heu;Kim, Yu-Shin;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.32-38
    • /
    • 2005
  • In this research, a procedure to improve the feasibility of design space is proposed by an approximation model. The Chebyshev Inequality is used as the criterion of modification of design space. This procedure is applied to the aero-elastic transonic wing design problem and the feasibility of the design space is greatly improved. Also the optimization results are improved by appling this procedure. That is, the probability to satisfy all imposed constraints is increased and the better design points are included in design space after this procedure. And the use of both a second-order response surface model and the Kriging model is investigated and compared in accuracy, efficiency, and robustness as approximation models in this procedure for different sampling methods. As a result, the second-order response surface model is more appropriate for our application than the Kriging model, because it is linear enough to be fitted well by the response surface model.

Analysis of the Front Disk Brake Squeal Using Kriging Method (크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석)

  • Sim, Hyun-Jin;Park, Sang-Gil;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.

A STUDY ON THE INTERPOLATION METHODS FOR THE FLUID-STRUCTURE INTERACTION ANALYSIS (유체-구조 연계 해석을 위한 보간 기법 연구)

  • Lee, J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to the other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock strength, whereas kriging preserves the shock strength.

Optimum Design of Composite Structures using Metamodels (메타모델을 이용한 복합재료 구조물의 최적 설계)

  • 이재훈;강지호;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.36-43
    • /
    • 2003
  • In this research, the optimization of composite structures was performed using metamodels. The optimization of composite structures requires a lot of time when optimizing the result of the time-consuming analysis. Thus, metamodels are used to replace the time-consuming analysis with simple models. RSM, kriging and neural networks are widely used metamodels. RSM and kriging were used in this study. The ultimate failure load analysis of the composite structure was approximated by metamodels. The optimizations of the composite plate were performed to maximize ultimate failure load using genetic algorithm and metamodels.

COMPARATIVE STUDY ON THE INTERPOLATION METHODS FOR THE AEROELASTIC ANALYSIS (공탄성 해석을 위한 보간 기법 비교 연구)

  • Lee, Jae-Hun;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-144
    • /
    • 2005
  • The fluid-structure interaction analysis such as a static aeroelastic analysis requires the result of each analysis as an input to other analysis. Usually the grids for the fluid analysis and the structural analysis are different, so the results should be transformed properly for each other. The Infinite Plate Spline(IPS) and the Thin Plate Spline(TPS) are used in interpolating the displacement and the pressure. In this study, such interpolation methods are compared with kriging which provides a precise response surface. The static aeroelastic analysis is performed for the supersonic flow field with shock waves and the pressure field is interpolated by the TPS and kriging. The TPS shows tendency to weaken the shock stength, whereas kriging preserves the shock strength.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.

A Study on Rainfall Regional Frequency Analysis Based A Bayesian Hierarchical Kriging Approach (Bayesian Hierarchical Kriging 기법을 이용한 강우지역빈도해석 모형 개발)

  • Kim, Jin-Young;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.466-466
    • /
    • 2015
  • 지역빈도해석은 수문학에서 오랜 역사를 갖고 있으며, 수년에 걸쳐 수문학적 변량의 정량적 추정을 위해 다양한 접근방법들이 제안되어 왔다. 그러나 제안된 방법들의 가설설정 수준이 높기 때문에 실제 적용에 제약이 많고, 적용 시에도 예측에 대한 불확실성이 높은 문제점이 있다. 본 연구에서는 이러한 문제점을 개선하기 위한 방법으로 계층적 베이지안 모델을 이용한 지역빈도해석 모형을 제안하고자 한다. 본 모형은 2개의 계층적 구조로 구성된다. 첫번째 계층은 재현기간별 GEV 분포의 매개변수를 정규화하여 주변분포로 설정하고, Kriging 기법을 이용하여 지형학적, 기상학적 정보들과 극치강수량 효과를 적합시켜 공간적 이질성과 미계측 유역에 대한 효과적인 보간을 가능하게 한다. 두번째 계층은 지점의 특성을 나타내는 매개변수들간의 공분산을 Bayesian 모델에 연계하여 매개변수들의 공간적 변동성을 나타낸다. 2개 계층의 결합확률분포는 MCMC 기법을 이용하여 예측값에 대한 불확실성을 정량적으로 분석하게 된다. 본 모형을 통해 홍수량 추정 시 필요한 시간 단위 극치강수량의 공간적 분포를 효과적으로 추정할 수 있을 것으로 판단된다.

  • PDF