• Title/Summary/Keyword: Kr${\ddot}$ppel-like factor 2

Search Result 5, Processing Time 0.019 seconds

The role of nuclear factor I-C in tooth and bone development

  • Roh, Song Yi;Park, Joo-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.2
    • /
    • pp.63-69
    • /
    • 2017
  • Nuclear factor I-C (NFI-C) plays a pivotal role in various cellular processes such as odontoblast and osteoblast differentiation. Nfic-deficient mice showed abnormal tooth and bone formation. The transplantation of Nfic-expressing mouse bone marrow stromal cells rescued the impaired bone formation in $Nfic^{-/-}$ mice. Studies suggest that NFI-C regulate osteogenesis and dentinogenesis in concert with several factors including transforming growth factor-${\beta}1$, $Kr{\ddot{u}}ppel$-like factor 4, and ${\beta}$-catenin. This review will focus on the function of NFI-C during tooth and bone formation and on the relevant pathways that involve NFI-C.

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway (홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과)

  • Kim, Chae-Young;Kang, Bobin;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF effectively inhibited lipid accumulation, with the downregulation of adipogenic factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$). A high dose of SF decreased the protein levels of $PPAR{\gamma}$ and $C/EBP{\alpha}$ by over 90% compared to the control. SF-mediated downregulation of adipogenic factors was due to the regulation of early adipogenic factors including $C/EBP{\beta}$ and $Kr{\ddot{u}}ppel$-like Factor 2 (KLF2). In addition, SF ($200{\mu}g/mg$) decreased intracellular ROS generation by 40% during adipocyte differentiation. However, the SF significantly upregulated Nrf2 and its target proteins, hemoxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Furthermore, SF ($200{\mu}g/mg$) promoted the nuclear translocation of Nrf2. The SF-mediated reduction of lipid accumulation was associated with the regulation of the Nrf2/Keap1 pathway.

Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling

  • Kim, Donghee;Li, Hui Ying;Lee, Jong Han;Oh, Yoon Sin;Jun, Hee-Sook
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.9.1-9.10
    • /
    • 2019
  • Mesangial cell proliferation has been identified as a major factor contributing to glomerulosclerosis, which is a typical symptom of diabetic nephropathy (DN). Lysophosphatidic acid (LPA) levels are increased in the glomerulus of the kidney in diabetic mice. LPA is a critical regulator that induces mesangial cell proliferation; however, its effect and molecular mechanisms remain unknown. The proportion of ${\alpha}-SMA^+/PCNA^+$ cells was increased in the kidney cortex of db/db mice compared with control mice. Treatment with LPA concomitantly increased the proliferation of mouse mesangial cells (SV40 MES13) and the expression of cyclin D1 and CDK4. On the other hand, the expression of $p27^{Kip1}$ was decreased. The expression of $Kr{\ddot{u}}ppel$-like factor 5 (KLF5) was upregulated in the kidney cortex of db/db mice and LPA-treated SV40 MES13 cells. RNAi-mediated silencing of KLF5 reversed these effects and inhibited the proliferation of LPA-treated cells. Mitogen-activated protein kinases (MAPKs) were activated, and the expression of early growth response 1 (Egr1) was subsequently increased in LPA-treated SV40 MES13 cells and the kidney cortex of db/db mice. Moreover, LPA significantly increased the activity of the Ras-related C3 botulinum toxin substrate (Rac1) GTPase in SV40 MES13 cells, and the dominant-negative form of Rac1 partially inhibited the phosphorylation of p38 and upregulation of Egr1 and KLF5 induced by LPA. LPA-induced hyperproliferation was attenuated by the inhibition of Rac1 activity. Based on these results, the Rac1/MAPK/KLF5 signaling pathway was one of the mechanisms by which LPA induced mesangial cell proliferation in DN models.

Effect of Phlorotannins Isolated from the Ethyl Acetate Fraction of Ecklonia stolonifera on Peritoneal Macrophage Polarization (복강대식세포의 염증성 표현형에 대한 곰피(Ecklonia stolonifera) 유래 Phlorotannins의 효과)

  • Choi, Min-Woo;Choi, Jun-Hyeong;Kim, Hyeung-Rak;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.439-446
    • /
    • 2015
  • Inflammation is a protective response to infection or injury. However, prolonged inflammation can contribute to the pathogenesis of many diseases, such as cancer, diabetes, arthritis, atherosclerosis, and Alzheimer's disease. Recent studies have shown that activated macrophages, inflammatory effector cells, can react to tissue insults in a polarized manner, in which their phenotypes are polarized into two major subtypes, categorized as M1 or M2. Classical M1 activation involves the production of pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$, and free radicals, while M2 or alternative activation is an anti-inflammatory phenotype involved in homeostatic processes, such as wound healing, debris scavenging, and the dampening of inflammation via the production of very low levels of pro-inflammatory cytokines and high levels of anti-inflammatory mediators, including IL-10. As part of our ongoing effort to isolate anti-inflammatory compounds from seaweeds, we investigated the effects of phlorotannins isolated from the brown alga Ecklonia stolonifera on macrophage polarization. Mouse peritoneal macrophages were treated with various concentrations of the extracts, and real-time RT-PCR analyses were performed to examine the expression of polarization markers: IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ for M1 and arginase-1, peroxisome proliferator-activated receptor (PPAR)-${\gamma}$, found inflammatory zone-1 (Fizz-1), chitinase 3-like 3 (Ym1), and$Kr{\ddot{u}}ppel$-like factor 4 (Klf-4) for M2. The pretreatment of cells with eckol, dieckol, and phlorofucofuroeckol-A (PFF-A), isolated from the ethyl acetate fraction of E. stolonifera ethanolic extract, potentiated the anti-inflammatory M2 phenotype of the macrophages. These results indicate that phlorotannins derived from E. stolonifera can be used to enrich macrophages with markers of the M2 anti-inflammatory state.