• Title/Summary/Keyword: Korean traditional medicines

Search Result 578, Processing Time 0.024 seconds

Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried Phomopsis sp. XP-8 Cells

  • Gao, Zhenhong;Rajoka, Muhammad Shahid Riaz;Zhu, Jing;Zhang, Zhiwei;Zhang, Yan;Che, Jinxin;Xu, Xiaoguang;Shi, Junling
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1428-1440
    • /
    • 2017
  • Phomopsis sp. XP-8 (an endophytic fungus) was previously found to produce pinoresinol diglucoside (PDG), a major antihypertensive compound of Tu-Chung (the bark of Eucommia ulmoides Oliv.), which is widely used in Chinese traditional medicines. In the present study, two bioconversion systems were developed for the production of PDG in Tris-HCl buffer containing glucose and Phomopsis sp. XP-8 cells (both resting and freeze-dried). When other factors remained unchanged, the bioconversion time, glucose concentration, cell ages, cell dosage, pH, temperature, and stirring speed influenced PDG production in a similar and decreasing manner after an initial increase with increasing levels for each factor. Considering the simultaneous change of various factors, the optimal conditions for PDG production were established as 70 g/l cells (8-day-old), 14 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing resting cells, and 3.87 g/l cells, 14.67 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing freeze-dried cells. The systems employing freeze-dried cells showed lower peak PDG production ($110.28{\mu}g/l$), but at a much shorter time (12.65 h) compared with resting cells (23.62 mg/l, 91.5 h). The specific PDG production levels were 1.92 and $24{\mu}g$ per gram cells per gram glucose for freeze-dried cells and resting cells, respectively. Both systems indicated a new and potentially efficient way to produce PDG independent of microbial cell growth.

Effect of Chungpaesagan-tang on ischemic damage induced by MCAO in spontaneously hypertensive rats

  • Kim, Ko-Eun;Kim, Soo-Yong;Kim, Eun-Young;Kim, Bum-Hoi;Shin, Jung-Won;Lee, Hyun-Sam;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Advances in Traditional Medicine
    • /
    • v.8 no.4
    • /
    • pp.430-439
    • /
    • 2008
  • Chungpaesagan-tang (CPSGT) is most frequently used to treat ischemic brain injury in tradition Korean medicine. Clinically, cerebral ischemia is likely to be accompanied by preexisting or complicating disease. However, animal models used to examine the effects of herbal medicines on cerebral ischemia have not given this issue sufficient consideration. The present study was undertaken to determine the effects of CPSGT on focal cerebral ischemia in normal and SHR rats subjected to transient middle cerebral artery occlusion (MCAO). Animals were divided into four groups: Normal (Sprague-Dawley) rats subjected to MACO (the NC+MCAO group), normal rats subjected to MCAO and then administered CPSGT (NC + MCAO + CP), SHR rats subjected to MCAO (SHR + MCAO), and SHR rats subjected to MCAO and then administered CPSGT (SHR + MCAO + CP). MCAO was performed using the intraluminal method. CPSGT was administrated orally twice (1 and 4 h) after MCAO. All animals were sacrificed at 24 h postoperatively. Brain tissues were stained with hematoxylin & eosin, to examine the effect of CPSGT on ischemic brain tissues. In addition, changes in TNF-$\alpha$ expression in ischemic areas were examined by immunostaining. CPSGT was found to significantly reduce infarction areas in normal and SHR rats and infarction volumes in SHR rats. Similarly, CPGST markedly increased neuron numbers and sizes in all treated groups, except cell sizes in SHRs. Furthermore, CPSGT reduced TNF-$\alpha$ expression in MCAO administered SHR rats. The findings of the present study suggest that CPSGT effectively ameliorates neuron damage caused by MACO-induced cerebral ischemia, and that it has a significant neuroprotective effect after cerebral ischemia in SHR.

Effect of Cheongyeoltang (CYT) using Bioconversion on Atopic Dermatitis (청열탕(淸熱湯)의 생물전환을 통한 항아토피피부염 효능(效能) 연구(硏究))

  • Kang, Hyun-Suk;Kim, Seung-Hyung;Gim, Seon-Bin;Kim, Soo-Myung;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.19 no.2
    • /
    • pp.119-137
    • /
    • 2011
  • In order to improve efficacy of oriental medicines and to study the application of fermented oriental medicine in clinicals, the efficacy of CYT and CYTBH on atopic dermatitis were evaluated. The results and conclusions are as follows. CYT and CYTBH significantly improved the atopic dermatitis symptoms in NC/Nga mice by naked eye evaluation and significantly decreased clinical index in both groups. CYT and CYTBH both decreased the cell numbers of CD3+, CD11b+Gr-1+ cells in dorsal skin. Of the cells, CYT significantly decreased CD11b+Gr-1+ cells whereas CYTBH significantly decreased all immune cells. CYT and CYTBH both decreased the production rate of IL-4 and IFN-${\gamma}$ activated by CD3/CD28. In the case of CYTBH, significant decrease in all cases was observed. CYT and CYTBH decreased the production rate of IL-5, IL-13 and IL-17 in serum. Significant decrease of IL-5 in the case of CYT and IL-5 and IL-13 in the case of CYTBH were observed. CYT and CYTBH significantly decreased transcription of IL-5 mRNA and IL-13 mRNA in skin. Significant decrease in IgG1 and IgE immunoglobulins in serum were oberved in both groups. Significant decrease was only observed in the case of CYTBH. Both CYT and CYTBH significantly decreased the secretion of histamine. Both CYT and CYTBH suppressed erythema, hemorrhage, edema, excoriation, erosion of skin tissues of NC/Nga mice resulting in the decrease of thickness of epidermis. Significant decrease of infiltration of obese cells was also observed. The results above indicated that both CYT and CYTBH had significant efficacy in the treatment of atopic dermatitis through immune modulation. Animal studies showed that CYTBH had superior activity than that of CYT suggesting further and continuous studies on the changes in ingredients or absorption improvement by fermentation should follow.

Effects of Solvent-extracted Fractions from Salicornia herbacea on Anti-oxidative Activity and Lipopolysaccharide-induced NO Production in Murine Macrophage RAW264.7 Cells

  • Lee, Whi-Min;Sung, Hye-Jin;Song, Jae-Chan;Cho, Jae-Youl;Park, Hwa-Jin;Kim, Suk;Rhee, Man-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.161-168
    • /
    • 2007
  • Salicornia herbacea L. (Chenopodiaceae: S. herbacea) is a salt marsh plant, which has long been prescribed in traditional medicines for the treatment of intestinal ailments, nephropathy, and hepatitis in Oriental countries. In order to elucidate the mechanisms of this herb, we conducted an anti-oxidative activity, the inhibition of nitric oxide (NO) production, and the suppression of the pro-inflammatory cytokine genes, with the solvent-extracts of S. herbacea. We found that both ethyl acetate and n-butanol tractions showed potent anti-oxidative effects in comparison to other fractions using xanthine oxidase assay with $IC_{50}$ values of $66.0{\pm}0.5\;{\mu}g/ml$ and $82.5{\pm}3.8\;{\mu}g/ml$, respectively. In addition, both ethyl acetate and n-butanol fractions showed more electron donating activity (EDA) than other tractions, according to DPPH (2, 2-Diphenyl-lpicrylhydrazyl radical) assay. The EDA of ethyl acetate fraction ($IC_{50}$ values of $117.5{\pm}3.8\;{\mu}g/ml$) is more significant than that of n-butanol fraction ($IC_{50}$ values of $375.0{\pm}12.5\;{\mu}g/ml$). Among potential anti-oxidative tractions, ethyl acetate traction dose-dependently suppressed lipopolysaccharide (LPS, $0.1\;{\mu}g/ml$)-induced nitric oxide (NO) production in RAW264.7 cell, while n-butanol did not. As expected, ethyl acetate fraction suppressed the expression of inducible NO synthase (iNOS) in RAW264.7 cell stimulated by $0.1\;{\mu}g/ml$ of LPS. Moreover, the ethyl acetate traction suppressed the expression of interleukin-1 $(IL)-1{\beta}$ and granulocyte/macrophage colony-stimulating factor (GM-CSF) mRNA in LPS-stimulated RAW264.7 cells. Therefore, these results suggest that S. herbacea may have anti-oxidative and anti-inflammatory activities by modulating radical-induced toxicity and various pro-inflammatory responses.

  • PDF

Study on The Drug Processing of of the Roots of Aconitum carmichaeli (바꽃(烏頭)의 포제(抱製)에 관한 연구)

  • Seong, Man-Jun;Lee, Kye-Suk;Cho, Sun-Hee;Lee, Go-Hoon;Kang, OK-Hwa;Kwon, Dong-Yeul
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 2005
  • From the tuberous root of Aconitum carmichaeli Debx.(Ranunculaceae), the main root is called as common monkhood mother root and the later root is called as the prepared aconite root. From the prepared aconite root. Looking at the processing method of the prepared aconite root, it is divided into Yeombuja (prepared aconite root processed in salt) and heuksoonpyeon (baekbupyeon) following the processing method after removing the soil and this is a way of processing the prepared aconite root without damage it. The recently produced raw prepared aconite root is easily damaged, thus it shall be preserved in salt to have the crystal shape on the surface of the prepared aconite root and store and transport in firmly solidified yeombuja condition. Therefore, yeombuja shall remove the salt before use and requires processing for use but heuksoonpyeon or baekbupyeon may use immediately. For the succession of the unique processing techniques of our ancestors, there has to be studies on the techniques. Prepared aconite root is generally used as holy medicines to cure the yang depletion syndrome, kidney-yang deficiency syndrome, and obstruction of qi in the chest syndrome. However, they are the substances with toxicity. It is contemplated that the contents of processing are broadly understood through the document on the processing method, and based on such foundation, the systematic set and proof on the documents are made along with the addition of the contemporary scientific theory and technology to develop the traditional processing technology to maximize the treatment effect and safety of prepared aconite root. In this study, the historic data and records on the processing method of latteral root of aconitum carmichaeli Debx will be rearranged to contribute to the standardization of medicinal herbs, maximization of efficacy and minimization of the side effects.

  • PDF

Anti-inflammatory effects of Herba Artemisiae Capillaris as a consequence of the inhibition of NF-kappa B-dependent iNOS and pro-inflammatory cytokines production. (Nuclear Factor kappa B 억제를 통한 인진추출물의 inducible Nitric Oxide synthase 및 Cytokine 억제효과)

  • Kim, Dae-Sung;Park, Sook-Jahr;Jo, Mi-Jeong;Park, Sang-Mi;Kim, Sang-Chan;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • Herba Artemisiae Capillaris is the dried bud of Artemisia capillaris Thunb, which has been used for expelling heat to loosen the bowels and normalizing gallbladder function to cure jaundice in traditional oriental medicines. In the present study, we evaluated the anti-inflammatory effects of the aqueous extracts of Herba Artemisiae Capillaris (HAC) in LPS-activated Raw 264.7 cells. Cells were treated with $1\;{\mu}g/ml$ of LPS 1 h before adding HAC extract. Cell viability was determined by MTT assay, and the relative level of NO was measured with Griess reagent. TNF-$\alpha$, IL-$1{\beta}$, and IL-6 cytokines were detected by ELISA. During the entire experimental period, all three doses of HAC extract (0.03, 0.10 and 0.30 mg/ml) had no significant cytotoxicity. LPS-activated cells showed increased NO levels and iNOS expressions compared to control. However, these increases were dramatically attenuated by treatment with HAC extract. Moreover, the inhibitory effects of HAC extract occurred in a dose-dependent manner. In addition, HAC extract reduced the translocation of $NF{\kappa}B$ into nuclear. HAC reduced production of IL-$1{\beta}$ and IL-6 by LPS, although it had no effects on TNF-$\alpha$. These results demonstrate that liquiritigenin exerts anti-inflammatory effects, which results from the inhibition of $NF{\kappa}B$ activation in macrophages, thereby decreasing production of iNOS and proinflammatory cytokines. Taken together, these results indicate that the aqueous extracts of Herba Artemisiae Capillaris warrant further development as an anti-inflammatory agent for the treatment of gram-negative bacterial infections.

  • PDF

Current Medical Therapies for Osteoporosis and Its Alternative Treatments Using Natural Products (골다공증 치료법과 천연물을 이용한 대체요법)

  • Oh, Seunghoon;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • Osteoporosis is a major bone disorder defined as having bone mineral density (BMD) of 2.5 standard deviations or more below the peak bone mass. Osteoporosis will increasingly be a major disorder that faces the aging mankind. It is the result of an imbalance in the bone remodeling system, where bone constantly undergoes a cycle of resorption by osteoclasts and formation by osteoblasts. Estrogen deficiency in women following menopause is identified as the predominant reason that causes disparity in this system. Current medical treatments for osteoporosis include hormone replacement therapy (HRT), biphosphonates, and teriparatide, but have various side effects that raise questions concerning their medical safety and practicality. Alternative treatments involving natural product sources are under study to find a safer therapy. Many natural sources including lactoferrin and isoflavones and numerous traditional herbal medicines exhibit anti-resorptive or anabolic effects on bone and thus show promises to provide therapeutic agents in treating osteoporosis. Unfortunately, the majority of natural product treatments are still in its preliminary stages to prove their efficacy even though the development pace of treatment for osteoporosis is astounding in the past few decades. Further progress in pre-clinical studies and the subsequent clinical studies will someday lead to a breakthrough that takes us another step forward in science.

Induction of Apoptosis by Citri Pericarpium Methanol Extract through Reactive Oxygen Species Generation in U937 Human Leukemia Cells (진피 메탄올 추출물의 활성산소종 생성을 통한 인체 백혈병 세포의 apoptosis 유발)

  • Kim, Ga Hee;Lee, Moon Hee;Han, Min Ho;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1057-1063
    • /
    • 2013
  • Citri Pericarpium is one of the most commonly used traditional herbal medicines in Korea, China, and Japan. Its extracts have many properties including the treatment of indigestion and inflammatory respiratory syndromes such as bronchitis and asthma. However, the underlying molecular mechanisms of anti-cancer activity and molecular targets are not fully understood. In this work, we investigated the anti-proliferative activity of Citri Pericapium (EMCP) methanol extract on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death using U937 human leukemia cells in vitro. EMCP treatment decreased cell proliferation in a dose-dependent manner following an increase of the sub-G1 phase, the down-regulation of Bax proteins, the activation of caspases, the degradation of poly (ADP-ribose) polymerase proteins (PARP), and the induction of ROS generation. However, the quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the EMCP-induced apoptosis effects. In addition, heme oxygenase-1 expression also recovered by inhibiting the nuclear translocation of phosphorylated NF-E2-related factor 2. Taken together, our data indicate that ROS are involved as key mediators in the early molecular events in the EMCP-induced apoptotic pathway.

The culture conditions for mycelial growth and sclerotial formation of Polyporus umbellatus

  • Lee, Min Woong;Chang, Kwang Chun;Shin, Do Bin;Lee, Kyung Rim;Im, Kyung Hoan;Jin, Ga-Heon;Shin, Pyung Gyun;Xing, Yong Mei;Chen, Juan;Guo, Shun Xing;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2013
  • Polyporus umbellatus (Syn. Grifola umbellata) is a sclerotium forming mushroom belongs to family Polyporaceae of Polyphorales, Basidiomycota. The sclerotia of P. umbellatus have long been used for traditional medicines in China, Korea and Japan. This study was initiated to obtain the basic data for artificial sclerotial production of P. umbellatus. Here, we investigated the favorable conditions for mycelial growth of P. umbellatus and its symbiotic fungus Armillaria mellea. We also evaluate the favorable carbon and nitrogen sources for sclerotial formation in dual culture between P. umbellatus and A. mellea. The favorable conditions for mycelial growth of P. umbellatus were $20^{\circ}C$ and pH 4, while optimal conditions for mycelial growth of A. mellea were $25^{\circ}C$ and pH 6. The carbon sources for optimal mycelial growth of P. umbellatus were fructose and glucose, while carbon sources for favorable mycelial growth of A. mellea were also fructose and glucose. The nitrogen sources for favorable mycelial growth P. umbellatus were peptone and yeast extract, while optimal mycelial growth of A. mellea were obtained in peptone and yeast extract. When P. umbellatus and A. mellea were dual cultured on carbon sources, sclerotia were induced on basal media supplemented with glucose, fructose and maltose at pH 4~6, while nitrogen sources inducing sclerotia were basal media supplemented with peptone and yeast extract for 60 days at $20^{\circ}C$ under dark condition.

The As-removal Effects of Pyrite Including Arsenopyrite after Process for Use in Medicine. (유비철석을 함유하는 황철석 약광물의 수치 후 비소 제거효과)

  • Hwang, Jung;Heo, Soon-Do
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.537-543
    • /
    • 2003
  • As pyrite is commonly associated with arsenopyrite, the use of pyrite including arsenopyrite for medicine requires close attention on arsenic toxicity. The toxicity was reduced by traditional processing operations include heating and quenching in vinegar. To verify the scientific effects of this process, pyrite containing many crystals of arsenopyrite was processed at temperatures from 45$0^{\circ}C$ to 85$0^{\circ}C$ and through as many as 5 processing cycles. Arsenopyrite completely disappeared when processed only once at $650^{\circ}C$ while it remained even after 5 processing cycles at 45$0^{\circ}C$. Arsenic was most abundant in medicinal mineral samples processed at 45$0^{\circ}C$ and sharply decreased when processed at $650^{\circ}C$ or 85$0^{\circ}C$ And arsenic extraction test in water was carried out from the processed pyrite medicine on the assumption that pyrite medicines with the lowest As metal content would be most desirable. Arsenic were most abundant in water extracted from medicinal mineral samples processed at 45$0^{\circ}C$ and sharply decreased when processed at $650^{\circ}C$ or 85$0^{\circ}C$. But the extracted As concentrations in water exceeded drinking water standards even when processed at 85$0^{\circ}C$. Increasing temperature promoted elimination of arsenopyrite and reduction of As in medicinal minerals and the extraction solutions. But the effects of processing cycles at the same processing temperature were not clear. Heating temperature is more important than number of processing cycles for the removal of arsenic, and it is necessary to heat pyrite to over $650^{\circ}C$ to remove it.