• Title/Summary/Keyword: Korean text classification

Search Result 413, Processing Time 0.029 seconds

A User Sentiment Classification Using Instagram image and text Analysis (인스타그램 이미지와 텍스트 분석을 통한 사용자 감정 분류)

  • Hong, Taekeun;Kim, Jeongin;Shin, Juhyun
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier (TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법)

  • Yoo, Jong-Yeol;Hyun, Sang-Hyun;Yang, Dong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.242-245
    • /
    • 2015
  • Recently due to large-scale data spread in digital economy, the era of big data is coming. Through big data, unstructured text data consisting of technical text document, confidential document, false information documents are experiencing serious problems in the runoff. To prevent this, the need of art to sort and process the document consisting of unstructured text data has increased. In this paper, we propose a novel text classification scheme which learns some data sets and correctly classifies unstructured text data into two different categories, True and False. For the performance evaluation, we implement our proposed scheme using $Na{\ddot{i}}ve$ Bayes document classifier and TF-IDF modules in Python library, and compare it with the existing document classifier.

  • PDF

A Deeping Learning-based Article- and Paragraph-level Classification

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.31-41
    • /
    • 2018
  • Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.

A Comparison of Socio-linguistic Characteristics and Instructional Influences of Different Types of Informational Science Texts (정보적 과학 텍스트의 사회-언어학적 특징과 초등 과학 학습에 미치는 효과)

  • Lim, Hee-Jun;Kim, Hyun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.2
    • /
    • pp.232-241
    • /
    • 2011
  • The purpose of this study was to compare socio-linguistic characteristics and instructional influences of two different types of texts, which were narrative and expository. Socio-linguistic characteristics of two different types of texts were analyzed in their content specialization, linguistic formality, and social-pedagogic relationships. Expository texts showed strong scientific classification, and medium level of linguistic formality, and low level of social-pedagogic relationships. Narrative texts showed different characteristics. The instructional effects were investigated with 91 fifth grade elementary students in three classes. Each class was randomly assigned into three groups: expository text group, narrative text group, control group. The results showed that the science achievement scores of the narrative text group was higher than those of other groups. The affective domain test scores of the expository text group were higher than other groups. The perception of students on informational science text were generally positive both types of texts.

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

Classification of Rural Villages Using Information Theory (정보이론을 이용한 농촌마을 권역화 연구)

  • Lee, Ji-Min;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • Classification results of rural villages provide useful information about rural village characteristics to select similar villages in rural development project; many researches about regional classification have been practiced. Recently rural amenity was introduced as an alternative for rural development, and rural villages have been surveyed to find potential resources for rural development by 'Rural Amenity Resources Survey Project'. Accumulated information through this survey project could be used to classify rural villages. However existing rural classification method using statistical data is not efficient method to use rural amenity resources information described with text. We introduced Information Bottleneck Method (IBM) based on information theory and implemented this method to classification with rural amenity resources information of Yanggang-myen, Yeongdong-gun in Chungbuk province.

A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning (토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구)

  • Yuk, JeeHee;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.63-88
    • /
    • 2018
  • This research evaluated differences of classification performance for feature selection methods using LDA topic model and Doc2Vec which is based on word embedding using deep learning, feature corpus sizes and classification algorithms. In addition to find the feature corpus with high performance of classification, an experiment was conducted using feature corpus was composed differently according to the location of the document and by adjusting the size of the feature corpus. Conclusionally, in the experiments using deep learning evaluate training frequency and specifically considered information for context inference. This study constructed biomedical document dataset, Disease-35083 which consisted biomedical scholarly documents provided by PMC and categorized by the disease category. Throughout the study this research verifies which type and size of feature corpus produces the highest performance and, also suggests some feature corpus which carry an extensibility to specific feature by displaying efficiency during the training time. Additionally, this research compares the differences between deep learning and existing method and suggests an appropriate method by classification environment.

Text Classification by Deep Learning Fusion (딥러닝 융합에 의한 텍스트 분류)

  • Shin, Kwang-Seong;Ham, Seo-Hyun;Shin, Seong-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.385-386
    • /
    • 2019
  • This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification.

  • PDF