• Title/Summary/Keyword: Korean text classification

Search Result 413, Processing Time 0.026 seconds

Study on prediction for a film success using text mining (텍스트 마이닝을 활용한 영화흥행 예측 연구)

  • Lee, Sanghun;Cho, Jangsik;Kang, Changwan;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1259-1269
    • /
    • 2015
  • Recently, big data is positioning as a keyword in the academic circles. And usefulness of big data is carried into government, a local public body and enterprise as well as academic circles. Also they are endeavoring to obtain useful information in big data. This research mainly deals with analyses of box office success or failure of films using text mining. For data, it used a portal site 'D' and film review data, grade point average and the number of screens gained from the Korean Film Commission. The purpose of this paper is to propose a model to predict whether a film is success or not using these data. As a result of analysis, the correct classification rate by the prediction model method proposed in this paper is obtained 95.74%.

An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems (베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법)

  • 김제욱;김한준;이상구
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.966-978
    • /
    • 2002
  • There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods

Data augmentation methods for classifying Korean texts (한국어 텍스트 분류 분석을 위한 데이터 증강 방법)

  • Jihyun Jeon;Yoonsuh Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.5
    • /
    • pp.599-613
    • /
    • 2024
  • Data augmentation is widely adopted in computer vision. In contrast, research on data augmentation in the field of natural language processing has been limited. We propose several data augmentation methods to support the classification of Korean texts. We increase the size and diversity of text data which are specifically tailored to Korean. These methods adopt and adjust the existing data augmentation for English texts. We could improve the classification accuracy and sometimes regularize the natural language models to reduce the overfits. Our contribution to the data augmentation regarding Korean texts compose of three parts. 1) data augmentation with Spelling Correction, 2) Easy data augmentation based on part-of-speech tagging, and 3) Data augmentation with conditional Masked Language Modeling. Our experiments show that classification accuracy can be improved with the aids of our proposed methods. Due to the limit of computing facilities, we consider rather small-scale Korean texts only.

Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining (효과적인 산업재해 분석을 위한 텍스트마이닝 기반의 사고 분류 모형과 온톨로지 개발)

  • Ahn, Gilseung;Seo, Minji;Hur, Sun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.179-185
    • /
    • 2017
  • Accident analysis is an essential process to make basic data for accident prevention. Most researches depend on survey data and accident statistics to analyze accidents, but these kinds of data are not sufficient for systematic and detailed analysis. We, in this paper, propose an accident classification model that extracts task type, original cause materials, accident type, and the number of deaths from accident reports. The classification model is a support vector machine (SVM) with word occurrence features, and these features are selected based on mutual information. Experiment shows that the proposed model can extract task type, original cause materials, accident type, and the number of deaths with almost 100% accuracy. We also develop an accident ontology to express the information extracted by the classification model. Finally, we illustrate how the proposed classification model and ontology effectively works for the accident analysis. The classification model and ontology are expected to effectively analyze various accidents.

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

Modelling Duration In Text-to-Speech Systems

  • Chung Hyunsong
    • MALSORI
    • /
    • no.49
    • /
    • pp.159-174
    • /
    • 2004
  • The development of the durational component of prosody modelling was overviewed and discussed in text-to-speech conversion of spoken English and Korean, showing the strengths and weaknesses of each approach. The possibility of integrating linguistic feature effects into the duration modelling of TTS systems was also investigated. This paper claims that current approaches to language timing synthesis still require an understanding of how segmental duration is affected by context. Three modelling approaches were discussed: sequential rule systems, Classification and Regression Tree (CART) models and Sums-of-Products (SoP) models. The CART and SoP models show good performance results in predicting segment duration in English, while it is not the case in the SoP modelling of spoken Korean.

  • PDF

A study of investigation and improvement to classification for oriental medicine in search portal web site (검색포털 지식검색에 대한 한의학분류체계 조사 및 개선방안 연구)

  • Kim, Chul
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • In these days everyone search the information easily with the Internet as the rapid distribution and active usage of the Internet. The search engines were developed specially to accuracy of information retrieval. User search the information more quickly and variously with them. The search portal system will be embossed with representation and basic services. The Internet user needs the result of text, image and video, knowledge search. The keyword based search is used generally for getting result of the information retrieval and another method is category based search. This paper investigates the classification of knowledge search structure for oriental medicine in market leader of search portal system by ranking web site. As a result, each classification system is unified and there is a possibility of getting up a many confusion to the user who approaches with classification systematic search method. This treatise proposed the improved oriental medicine classification system of internet information retrieval in knowledge search area. if the service provider amends about the classification system, there will be able to guarantee the compatibility of data. Also the proper access path of the knowledge which seeks is secured to user.

  • PDF

BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model (BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델)

  • Zhang, Junjun;Shin, Jongho;An, Suvin;Park, Taeyoung;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.34-36
    • /
    • 2022
  • In the existing text sentiment analysis models, the entire text is usually directly modeled as a whole, and the hierarchical relationship between text contents is less considered. However, in the practice of sentiment analysis, many texts are mixed with multiple emotions. If the semantic modeling of the whole is directly performed, it may increase the difficulty of the sentiment analysis model to judge the sentiment, making the model difficult to apply to the classification of mixed-sentiment sentences. Therefore, this paper proposes a sentiment analysis model BHGCN that considers the text hierarchy. In this model, the output of hidden states of each layer of BERT is used as a node, and a directed connection is made between the upper and lower layers to construct a graph network with a semantic hierarchy. The model not only pays attention to layer-by-layer semantics, but also pays attention to hierarchical relationships. Suitable for handling mixed sentiment classification tasks. The comparative experimental results show that the BHGCN model exhibits obvious competitive advantages.

  • PDF

Detecting spam mails using Text Mining Techniques (광고성 메일을 자동으로 구별해내는 Text Mining 기법 연구)

  • 이종호
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.35-39
    • /
    • 2002
  • 광고성 메일이 개인 당 하루 평균 10통 내외로 오며, 그 제목만으로는 광고메일을 효율적으로 제거하기 어려운 현실이다. 이러한 어려움은 주로 광고 제목을 교묘히 인사말이나 답신처럼 변경하는 데에서 오는 것이며, 이처럼 제목으로 광고를 삭제할 수 없도록 은폐하는 노력은 계속될 추세이다. 그래서 제목을 통한 변화에 적응하면서, 제목뿐만 아니라 내용에 대한 의미 파악을 자동으로 수행하여 스팸 메일을 차단하는 방법이 필요하다. 본 연구에서는 정상 메일과 스팸 메일의 범주화(classification) 방식으로 접근하였다. 이러한 범주화 방식에 대한 기준을 자동으로 알기 위해서는 사람처럼 문장 해독을 통한 의미파악이 필요하지만, 기계가 문장 해독을 통해서 의미파악을 하는 비용이 막대하므로, 의미파악을 단어수준 등에서 효율적으로 대신하는 text mining과 web contents mining 기법들에 대한 적용 및 비교 연구를 수행하였다. 약 500 통에 달하는 광고메일을 표본으로 하였으며, 정상적인 편지군(500 통)에 대해서 동일한 기법을 적용시켜 false alarm도 측정하였다. 비교 연구 결과에 의하면, 메일 패턴의 가변성이 너무 커서 wrapper generation 방법으로는 해결하기 힘들었고, association rule analysis와 link analysis 기법이 보다 우수한 것으로 평가되었다.

  • PDF

An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning (기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.37-62
    • /
    • 2018
  • This study examined the factors affecting the performance of automatic classification based on machine learning for domestic journal articles in the field of LIS. In particular, In view of the classification performance that assigning automatically the class labels to the articles in "Journal of the Korean Society for Information Management", I investigated the characteristics of the key factors(weighting schemes, training set size, classification algorithms, label assigning methods) through the diversified experiments. Consequently, It is effective to apply each element appropriately according to the classification environment and the characteristics of the document set, and a fairly good performance can be obtained by using a simpler model. In addition, the classification of domestic journals can be considered as a multi-label classification that assigns more than one category to a specific article. Therefore, I proposed an optimal classification model using simple and fast classification algorithm and small learning set considering this environment.