• 제목/요약/키워드: Korean squids

검색결과 85건 처리시간 0.023초

LED 색광의 음영구역에 대한 살오징어의 행동반응 및 LED 집어등의 어획성능 (Catching efficiency of LED fishing lamp and behavioral reaction of common squid Todarodes pacificus to the shadow section of color LED light)

  • 안영일;정학근
    • 수산해양기술연구
    • /
    • 제47권3호
    • /
    • pp.183-193
    • /
    • 2011
  • This study made a comparative analysis of behavioral reaction of squid to red (624nm), green (524nm), blue (460nm) & white LED light, its arrival time for the shadow section by making the shadow section in the central section of a water tank just like the bottom part of a squid jigging vessel, and on-site catching efficiency of LED fishing lamp with control fishing vessel. The color LED light showing the highest squidgathering rate as against the shadow section was found to be blue LED light with 39.3% rate under the dark (0.05lx) condition. Under the brighter condition than 0.05lx, white LED light was found to have the highest gathering rate of 41.5%. In addition, it was found that squid gathering rate was high at the shadow section which showed 6.3-fold brightness difference between the shadow section and bright section. As for the arrival time for the shadow section, blue LED light was found to be the fastest in attracting squids in 192.7 seconds under the dark condition while the red LED light was the fastest in luring squids in 164.6 seconds under the bright condition. The ratio of the squid-jigging operation and sailing in fuel consumption of the fishing vessel loaded with LED fishing lamp is about 7 to 1, showing most of the fuel is consumed more in sailing than in squid-jigging operation. As for a catch of squid, the control vessel loaded with MH (Metal Halide) fishing lamp had more catch of 600-7,080 squids than the vessel loaded with LED fishing lamp having a catch of 260-1,700 squids. In addition, even in the comparison of a catch per automatic jigging machine, the catch of the vessel loaded with MH fishing lamp excelled that of the vessel loaded with LED fishing lamp in 6 operations of squid jigging out of 9 operations. The ratio of hand-jigging and automatic jigging machine (one line) in the LED fishing lamp vessel was 1:1.1 excepting the case of having a catch only using an automatic jigging machine, showing almost the same with each other in catches, while in case of a MH fishing lamp vessel, its ratio against hand-jigging was 1 to 5.8, showing hand-jigging excelled in catches.

Development of Superconducting Low-frequency Gravitational-wave Telescope (SLGT): Technical Challenge and Feasibility

  • Lee, Yong Ho;Ahn, Sang-Hyeon;Bae, Yeong-Bok;Kang, Gungwon;Kim, Chunglee;Kim, Whansun;Oh, John J.;Oh, Sang Hoon;Park, Chan;Son, Edwin J.;Paik, Ho Jung
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.52.2-52.2
    • /
    • 2017
  • Recent success of gravitational wave (GW) detection by LIGO opened a new window to expand our understanding of the Universe. In addition to LIGO, several other developments are going on or under planning. However, each of these detectors has a specific sensitive frequency range. There is a missing frequency band, 0.1-10 Hz, where detectors loose sensitivity significantly due to Newtonian noise on the Earth. We introduce a plan to develop a Superconducting Low-frequency Gravitational- wave Telescope (SLGT), which can observe massive black holes in 0.1-10 Hz. The SLGT system consists of magnetically levitated six test masses, superconducting quantum interference devices (SQUIDs), rigid support frame, cooling system, vibration isolation, and signal acquisition. By taking the advantage of nearly quantum-limited low-noise SQUIDs and capacitor bridge transducers, SLGT's detection sensitivity can be improved to allow astrophysical observation of black holes in cosmological distances. We present preliminary design study and expected sensitivity, and its technical feasibility.

  • PDF

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

고온초전도 SQUID 신호 검출을 위한 3채널용 FLL 회로 (Integrated 3-Channel Flux-Locked-Loop Electronics for the Readout of High-$T_c$ SQUID)

  • 김진목;김인선;유권규;박용기
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 2003
  • We designed and constructed integrated 3-channel flux-locked-loop (FLL) electronic system for the control and readout of high-T$_{c}$ SQUIDs. This system consists of low noise preamplifiers, integrators, interface circuits, and software. FLL operation was carried out with biased signals of 19 KHz modulated current and 150 KHz modulated flux, which are reconstructed as detected signals by preamplifier and demodulator. Computer controlled interface circuits regulate FLL circuit and adjust SQUID parameters to the optimum operating condition. The software regulates interface circuits to make an auto-tuning for the control of SQUIDs, and displays readout data from FLL circuit. 3-channel SQUID electronic system was assembled with 3 FLL-interface circuit boards and a power supply board in the aluminum case of 56 mm ${\times}$ 53 mm${\times}$ 150 mm. Overall noise of the system was around 150 fT/(equation omitted)Hz when measured in the shielded room, 200 fT/(equation omitted)Hz in a weakly shielded room, respectively.y.

  • PDF

Development of Contaminant Detection System using HTS SQUIDs

  • Ohtani, T.;Tanaka, S.;Narita, Y.;Ariyoshi, S.;Suzuki, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권4호
    • /
    • pp.38-42
    • /
    • 2015
  • In terms of food safety,mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products.