• Title/Summary/Keyword: Korean sky map

Search Result 53, Processing Time 0.022 seconds

A STUDY OF SASIN-ANIMAL SKY MAP ON CHONMUNRYUCHO (천문유초(天文類初)에 기록된 사신동물천문도(四神動物天文圖) 연구)

  • 양홍진;박명구
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.83-94
    • /
    • 2003
  • Chon-Mun-Ryu-Cho (天文類抄), written (edited) by Lee Sun-Ji (李純之) during the period of King Se-Jong, is a representative astronomy book of Cho-Sun (朝鮮: A.D. 1392-1910) Dynasty. We find and study in the first page of the book; the description of 28 oriental constellations as a Sasin (four mythical oriental animals)-animal sky map which is not widely known yet. The map consists of four groups of constellations, each of which represents the Sasin: Chang-Ryong (蒼龍: dragon), Baek-Ho (白虎: tige.s with Ki-Rin [離隣: Oriental giraffe]), Ju-Jak (朱崔: Chinese phoenix), Hyun-Mu (玄武: a tortoise interwined with a snake). Each group (animals) spans 2 ~ 7 of 28 oriental constellations (宿). As we know from the illustration (論說) of the Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do (天象列次分野之圖), a representative sky map of Cho-Sun Dynasty, astronomy in Cho-Sun Dynasty is closely related to that in Go- Gu-Rye. (高句麗: B.C. 37 -A.D. 668) Dynasty. Since these Sasin-animals appear in most mural paintings of Go-Gu-Rye. (高句麗) tombs, visualization of sky with these animal constellations could have been established as early as in Go-Gu-Ryer Dynasty. We also reconstruct this ”A Sasin-animal Korean sky map” based on the shapes of the Sasin and Ki-Rin from Go-Gu-Ryer paintings and 28 oriental constellations in Chon- S an g- Yol- C h a- B un- Ya- J i- Do.

A STUDY OF THE GALACTIC CENTER REGIONS USING THE IMPROVED DATA OF THE MID-INFRARED ALL-SKY SURVEY

  • Mouri, A.;Kaneda, H.;Ishihara, D.;Oyabu, S.;Kondo, T.;Suzuki, S.;Yasuda, A.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.217-218
    • /
    • 2012
  • Among the AKARI all-sky survey data, the $9{\mu}m$ diffuse map is crucial to study the polycyclic aromatic hydrocarbon (PAH) emission features on large spatial scales, while the $18{\mu}m$ map is useful to trace hot dust emission. To utilize these advantages, we have improved the AKARI mid-infrared (MIR) all-sky survey diffuse maps. For example, we have established special methods to remove the effects of the ionizing radiation in the South Atlantic Anomaly (SAA) and of the scattered light from the moon. Using improved diffuse map data, we study the properties of PAHs and dust in the Galactic center region associated with high-energy phenomena.

Analysis of Clear Sky Index Defined by Various Ways Using Solar Resource Map Based on Chollian Satellite Imagery (천리안 위성 영상 기반 태양자원지도를 활용한 다양한 정의에서의 청천지수 특성 분석)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.47-57
    • /
    • 2019
  • Clear sky indices were estimated by various ways based on in-situ observation and satellite-derived solar irradiance. In principle, clear sky index defined by clear sky solar irradiance indicates the impacts of cloud on the incoming solar irradiance. However, clear sky index widely used in energy sciences is formulated by extraterrestrial irradiance, which implies the extinction of solar irradiance due to mainly aerosol, water vapor and clouds drops. This study examined the relative difference of clear sky indices and then major characteristics of clear sky irradiance when sky is clear are investigated. Clear sky is defined when clear sky index based on clear sky irradiance is higher than 0.9. In contrast, clear sky index defined by extraterrestrial irradiance is distributed between 0.4 and 0.8. When aerosol optical depth and air mass coefficient are relative larger, solar irradiance is lower due to enhanced extinction, which leads to the lower value of clear sky index defined by extraterrestrial irradiance.

Damage Proxy Map over Collapsed Structure in Ansan Using COSMO-SkyMed Data

  • Nur, Arip Syaripudin;Fadhillah, Muhammad Fulki;Jung, Young-Hoon;Nam, Boo Hyun;Kim, Yong Je;Park, Yu-Chul;Lee, Chang-Wook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.363-376
    • /
    • 2022
  • An area under construction for a living facility collapsed around 12:48 KST on 13 January 2021 in Sa-dong, Ansan-si, Gyeonggi-do. There were no casualties due to the rapid evacuation measure, but part of the temporary retaining facility collapsed, and several cracks occurred in the adjacent road on the south side. This study used the potential of synthetic aperture radar (SAR) satellite for surface property changes that lies in backscattering characteristic to map the collapsed structure. The interferometric SAR technique can make a direct measurement of the decorrelation among different acquisition dates by integrating both amplitude and phase information. The damage proxy map (DPM) technique has been employed using four high-resolution Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data spanning from 2020 to 2021 during ascending observation to analyze the collapse of the construction. DPM relies on the difference of pre- and co-event interferometric coherences to depict anomalous changes that indicate collapsed structure in the study area. The DPMs were displayed in a color scale that indicates an increasingly more significant ground surface change in the area covered by the pixels, depicting the collapsed structure. Therefore, the DPM technique with SAR data can be used for damage assessment with accurate and comprehensive detection after an event. In addition, we classify the amplitude information using support vector machine (SVM) and maximum likelihood classification algorithms. An investigation committee was formed to determine the cause of the collapse of the retaining wall and to suggest technical and institutional measures and alternatives to prevent similar incidents from reoccurring. The report from the committee revealed that the incident was caused by a combination of factors that were not carried out properly.

SDSS-V: Pioneering Panoptic Spectroscopy

  • Kollmeier, Juna A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.27.1-27.1
    • /
    • 2021
  • I will describe the current progress within the Fifth Generation of SDSS. SDSS-V is an unprecedented all-sky spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way galaxy, trace the emergence of the chemical elements, reveal the inner workings of stars, and investigate the origin of planets. It will provide the most comprehensive all-sky spectroscopy to multiply the science from the Gaia, TESS and eROSITA missions. SDSS will also create a contiguous spectroscopic map of the interstellar gas in the Milky Way and nearby galaxies that is 1,000 times larger than the state of the art, uncovering the self-regulation mechanisms of galactic ecosystems. It will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. I will highlight key areas of current scientific and technical development as well as opportunities to participate in the survey underway.

  • PDF

A QUALITY CHECK OF THE AKARI MID-INFRARED ALL-SKY DIFFUSE MAP TOWARD THE MASSIVE STAR-FORMING REGIONS NGC 6334 AND NGC 6357

  • Sano, Hidetoshi;Amatsutsu, Tomoya;Kondo, Toru;Nakamichi, Keichiro;Yamagishi, Mitsuyoshi;Ishihara, Daisuke;Oyabu, Shinki;Kaneda, Hidehiro;Tachihara, Kengo;Fukui, Yasuo
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.21-23
    • /
    • 2017
  • We present a comparative study of CO and polycyclic aromatic hydrocarbon (PAH) emission toward a region including the massive star-forming regions of NGC 6334 and NGC 6357. We use the NANTEN $^{12}CO(J=1-0)$ data and the AKARI $9{\mu}m$ All-Sky diffuse map in order to evaluate the calibration accuracy of the AKARI data. We confirm that the overall CO distribution shows a good spatial correspondence with the PAH emission, and their intensities exhibit a good power-law correlation with a spatial resolution down to 4' over the region of $10^{\circ}{\times}10^{\circ}$. We also reveal poorer correlation for small scale structures between the two quantities toward NGC 6357, due to strong UV radiation from local sources. Larger scatter in the correlation toward NGC 6357 indicates higher ionization degree and/or PAH excitation than that of NGC 6334.

The distribution of the molecular hydrogen in the Milky way

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2016
  • We present the far-ultraviolet fluorescent molecular hydrogen ($H_2$) emission map observed with FIMS/SPEAR for ~76% of the sky. The fluorescent $H_2$ emission is found to be saturated by strong dust extinction at the optically thick, Galactic plane region. However, the extinction-corrected intensity of fluorescent $H_2$ emission is found to have strong linear correlations with the well-known tracers of the cold interstellar medium, such as the E(B-V) color excess, neutral hydrogen column density N(HI), $H{\alpha}$ emission, and CO $J=1{\rightarrow}0$ emission. The all-sky molecular hydrogen column density map is also obtained using a photodissociation region model. We also derive the gas-to-dust ratio, hydrogen molecular fraction ($f_{H2}$), and $CO-to-H_2$ conversion factor ($X_{CO}$) of the diffuse interstellar medium. The gas-to-dust ratio is consistent with the standard value $5.8{\times}10^{21}atoms\;cm^{-2}mag^{-1}$, and the $X_{CO}$ tends to increase with E(B-V), but converges to the Galactic mean value $1.8{\times}10^{20}cm^{-2}K^{-1}km^{-1}s$ at optically thick regions with E(B-V)>2.0.

  • PDF

Improvement of Building Region Correspondence between SLI and Vector Map Based on Region Splitting (영역분할에 의한 SLI와 벡터 지도 간의 건물영역 일치도 향상)

  • Lee, Jeong Ho;Ga, Chill O;Kim, Yong Il;Yu, Ki Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • After the spatial discrepancy between SLI(Street-Level Imagery) and vector map is removed by their conflation, the corresponding building regions can be found based on SLI parameters. The building region correspondence, however, is not perfect even after the conflation. This paper aims to improve the correspondence of building regions by region splitting of an SLI. Regions are initialized by the seed lines, projection of building objects onto SLI scene. First, sky images are generated by filtering, segmentation, and sky region detection. Candidates for split lines are detected by edge detector, and then images are splitted into building regions by optimal split lines based on color difference and sky existence. The experiments demonstrated that the proposed region splitting method had improved the accuracy of building region correspondence from 83.3% to 89.7%. The result can be utilized effectively for enhancement of SLI services.

LIFECYCLE OF THE INTERSTELLAR DUST GRAINS IN OUR GALAXY VIEWED WITH AKARI/MIR ALL-SKY SURVEY

  • Ishihara, D.;Kaneda, H.;Mouri, A.;Kondo, T.;Suzuki, S.;Oyabu, S.;Onaka, T.;Ita, Y.;Matsuura, M.;Matsunaga, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.117-122
    • /
    • 2012
  • The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and $18{\mu}m$. These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.

Comparison of Observation Performance of Urban Displacement Using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR Time Series Images (ALOS-1 L-band PALSAR와 COSMO-SkyMed X-band SAR 시계열 영상을 이용한 도심지 변위관측 성능 비교 분석)

  • Choi, Jung-Hyun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.283-293
    • /
    • 2018
  • We applied PSInSAR to two SAR satellite (ALOS-1 and COSMO-SkyMed) images and analyzed the difference in displacement observation performance according to sensor characteristics. The building layer was extracted from the digital topographic map, and the PS extracted from the SAR image was classified into two groups(building structure and ground surface) for density analysis. The density of PS extracted from the research area was $0.023point/m^2$ for ALOS-1 PALSAR and $0.1point/m^2$ for COSMO-SkyMed, more than 4 times PS was extracted compared to ALOS-1. In addition, not only the PS density in the building, but also the density in the ground were greatly increased. The average displacement velocity of ALOS-1 PALSAR is within ${\pm}1cm/yr$, while for COSMO-SkyMed it is within ${\pm}0.3cm/yr$. Although it is difficult to make quantitative comparisons because it does not use the data for the same period, it can be said that the accuracy of X-band SAR system is very high compared to the L-band. In consideration of PS observation density and observation accuracy of displacement, X-band SAR data is very effective in research where it is important to acquire useful signals from the ground surface, such as ground subsidence and sinkhole.