• Title/Summary/Keyword: Korean reservoirs

Search Result 1,020, Processing Time 0.018 seconds

Classification of Agricultural Reservoirs Using Multivariate Analysis (다변량분석법을 활용한 농업용 저수지 수질유형분류)

  • Choi, Eun-Hee;Kim, Hyung-Joong;Park, Youmg-Suk
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.17-27
    • /
    • 2010
  • In order to manage the water quality in reservoir, it is necessary to understand the temporal and spatial variation of reservoirs and to classify the reservoirs. In this research, agricultural reservoirs are classified according to physical characteristics (depth, residence time, shape of the reservoir etc) and water quality using multivatriate analysis (PCA and CA). CA (Cluster Analysis) method classify reservoirs into several groups as a similarity of the reservoirs, but it is difficult to indicate a full list to the one table. In case of PCA (Principle Component Analysis) method, it has the advantage for the classification on the reservoirs depending on the water quality similarity and also it is useful to analyze the relationship between related factors through correlation analysis. However PCA is limited to classify into several groups based on the characteristics of the reservoirs and each user should be classified as randomly subjective according to the relative position of the reservoir in the figure. In conclusions, compared to conventional reservoirs classification methods, both CA and PCA methods are considered to be a classification method that describes the nature of the reservoir well, but classification results has a restriction on use, so further research will be needed to complement.

  • PDF

The Characterization of Fish Communities in Agricultural Reservoirs (농업용 저수지의 어류군집 특성)

  • Yoon, Ju-Duk;Jang, Min-Ho;Kim, Myoung-Chul;Nam, Gui-Sook;Hwang, Soon-Jin;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.131-137
    • /
    • 2006
  • Most South Korean lakes are middle/small size artificial reservoirs, which are almost agricultural reservoirs (17,956). A total of 67 species (21 families) were recorded and collected from 65 agricultural reservoirs though field samplings and literature surveys. Dominant species was Pseudorasbora parva (relative abundance 24.5%), and Carassius auratur (41 sites) was the highest frequency. Feeding group of fish communities in the reservoirs was as follows: carnivorous (16.2%), omnivorous (79.5%) and herbivorous fish (4.3%). The number of individuals (P=0.024), species number (P=0.047) and carnivores number (P=0.024) were significantly correlated with reservoir ages. Reservoirs were classified into 3 groups according to feeding patterns of carnivore, omnivore and herbivore groups. The omnivores were dominant group in agricultural reservoirs. Detailed studies on fish community will be a base for the understanding of food web structure and biomanipulation in reservoir systems.

Classification and Water Quality Management of Agricultural Reservoirs (농업용 저수지의 유형분류 및 수질관리)

  • 윤경섭;이광식;김형중;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.66-77
    • /
    • 2003
  • Monitoring data from agricultural reservoirs throughout the country were analyzed to classify agricultural reservoirs according to physical characteristics and COD concentrations, and evaluate the relationships bet-ween water quality items. The physical and chemical data of total 498 reservoirs were analyzed from 1990 to 2001. Average COD, TP, TN, Chl-a, SS concentrations for the reservoirs and pollutant loadings from their watersheds were used for the analysis. It was possible that reservoirs were classified to 4 types using the relationships between the ratios of effective storage per water surface (ST/WS ratio) and COD concentrations. It is recommended that the improvement measures of polluted reservoirs should be performed as following order : integrated consolidation type (complex mechanism type) $\rightarrow$ watershed consolidation type $\rightarrow$ integrated consolidation type (external mechanism type) $\rightarrow$ in-lake consolidation type $\rightarrow$ conservation type and the depth (ST/WS ratio) of reservoir maintained over 5~6 m for water quality improvement. The decision coefficients ($r^2$) between Chl-a and other items (COD, T-P, SS, T-N) were 0.6915, 0.6732, 0.5327, 0.3352, respectively. Therefore, reservoir managers could evaluate the trophic state of reservoirs by COD concentrations.

Development of Operation Rules in Agricultural Reservoirs using Real-Time Water Level and Irrigation Vulnerability Index (실시간 저수위 및 용수공급 취약성 지표를 활용한 농업용 저수지 운영 기준 개발)

  • Nam, Won Ho;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.77-85
    • /
    • 2013
  • The efficient operation and management strategies of reservoirs in irrigation periods of drought events are an essential element for drought planning and countermeasure. Korea Rural Community Corporation has developed the real-time water level observation system of agricultural reservoirs to efficiently operate reservoirs, however, it is not possible to predict drought conditions, and only provides information of current situation. Hence, it is necessary to evaluate accurate irrigation vulnerability and efficiently reservoir operation rules using current water level. In this paper, the improvement methods of reservoir operation planning were developed with water supply vulnerability characteristic curves comparing to automatic water gauge at agricultural reservoirs. The 11 reservoirs were simulated applying the reservoir operation rules which was determined by irrigation vulnerability characteristic curves criteria and real time water level, and evaluated water supply situation in 2012 year. The analysis of results can be identified probabilistic possibility of water supply failures compared with the existing reservoir operation criteria. These results of efficient reservoir operation rules can be achieved enable irrigation planners to optimally manage available water resources for decision making, and contributed to maintain the water supply according to demand strategy for agricultural reservoirs management.

Improvement of condition assessment criteria and embankment transformation of agricultural reservoirs after raising embankments

  • Lee, Dal-Won;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.258-274
    • /
    • 2016
  • Recently, as fluctuations in annual precipitations continue to grow, the frequency of floods and droughts is rapidly increasing. Especially, since many reservoirs are reported as having less capacity and aging faster than large dams, the damages due to floods and droughts are estimated to become more severe. With this background for the present study, field investigation of reservoirs in Chungnam, Chungbuk, and Chonbuk regions was carried out for disaster prevention and the safety management of agricultural reservoirs. Furthermore, embankment transformations were compared and analyzed after the raising of embankments. Based on design methods for remodeling agricultural reservoirs and the results of embankment raising and the problems which occurred on crest, supplementation to the upstream and downstream slopes, control sector, and spillway should be implemented in the existing reservoir. In regard to this, the condition assessment score of compound member of reservoirs was performed, the Chungnam region score was in the 3.11-4.73 range. In addition, reservoirs in Chungbuk scored in the 4.00-4.49 range, and reservoirs in Chonbuk scored in the 3.90-4.60 range. Applying current precision safety inspection practices to small reservoirs requires economic expenses and time, for which assessment items are too varied and complex. Therefore, subdivided condition assessment items and criteria should be improved and streamlined by deleting, reducing, combining, and selecting only the riskiest factors. In the future, reservoirs should be periodically monitored and systemically managed and rational plans for maintenance and repairs should be used as reinforcement methods.

Effects of Physical Characteristics on a Nutrient-Chlorophyll Relationship in Korean Reservoirs

  • Hwang, Soon-Jin;Jeon, Ji-Hong;Ham, Jong-Hwa;Kim, Ho-Sub
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.64-73
    • /
    • 2002
  • This study was performed to evaluate effects of physical characteristics of both watershed and reservoir on nutrient-chlorophyll relationship in Korean reservoirs. Simple linear models were developed with published data in Korea including 415 reservoirs and 11 multi-purpose dams, and physico-chemical parameters of reservoirs and characteristics relationship of models were analyzed. Theoretical residence time in Korean reservoirs was strongly correlated with the ratio of TA/ST (drainage area + surface area / storage volume) in the logarithmic function. As a result of monthly nutrients-chlorophyll-a regression analysis, significant Chl-a-TP relationship appeared during May~July. The high Chl-a yields per total phosphorus appeared during this time (R$\^$2/=0.51, p<0.001, N= 1088). Chlorophyll-a demonstrated much stronger relationship with TP. than TN. Seasonal algal-nutrient coupling were closely related with N:P ratio in the reservoir water, and it was, in turn, dependent on the monsoon climatic condition (precipitation). Based on the results of regression analysis and high N:P ratio, a major limiting factor of algal growth appeared to be phosphorus during this time. Unlikely TA/ST ratio, DA/SA ratio (drainage area f surface area) was likely to influence directly on the nutrient-Chl-a relationship, indicating that if storage volume and inflowing water volume were the same, algal biomass could be developed more in reservoirs with large surface area. Thus, DA/SA ratio seemed to be an important factor to affect the development of algal biomass in Korean reservoirs. With low determination coefficient of TP-Chl-a relationship, our findings indicated not only nutrient (phosphorus) but also other physical factors, such as DA/SA ratio, may affect algal biomass development in Korean reservoirs, where actual residence time appears to be more closely related to reservoir surface area rather than storage volume.

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.

Studies on Structural Degradation of Agricultural Reservoirs in Kyungki Province (경기도내 농업용 저수지의 제체 및 구조물의 노후도 조사 연구)

  • 장병욱;송창섭;박영곤;우철웅;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.90-97
    • /
    • 1997
  • Field inspections and laboratory tests for 31 agricultural reservoirs in Kyungki province were performed to provide basic data for maintenance and rehabilitation of agricultural reservoirs and to evaluate structural degradation of agricultural reservoirs Results of the study are as follows : 1) From survey's results of embankments, signs of settlement and lateral movement are appeared in 17 reservoirs. Crest settlement of 20~80cm, downstream settlement of 10~90cm, and 20~160cm lateral movement of embankments are detected from settlement and movement analysis of 17 reservoirs. Crest and downstream settlements and lateral movement are greatly occurred in 20 ~ 40 years after embankment construction. 2) About 39% of total reservoirs shows seepage problems occurred in the lower part of berm and retaining wall located between embankment and spillway. Probability of seepage problems is higher at retaining wall than others. 3) Concrete strength estimated by Schmidt hammer in structures of reservoirs is a range of 100~l50kgf/$cm^2$ and average deviation of concrete strength is about l0kgf/$cm^2$. Strength difference$({\delta}S)$ between compressive strength estimated by Schmidt hammer and uniaxial compressive strength of concrete core is about $\pm$100kgf/$cm^2$. This difference is due to absence or presence of reinforced bar in concrete core, variable length of concrete core and limitation of Schmidt hammer. 4) About 68% of total reservoirs shows leaching, 58% alkali-aggregate reaction and 71 % abrasion/frost. Leaching, alkali-aggregate reaction and abrasion/frost occurred in most reservoirs when passed 10 years after construction of structure parts.

  • PDF

Surveying Water Supply from Irrigation Reservoirs in the Han River Basin (한강수계 관개용 저수지의 공급량 조사)

  • 임상준;강민구;박승우;박창언
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.37-44
    • /
    • 2000
  • The objectives of the research were to modify and validate a daily water balance model, DIROM, for irrigation reservoirs using field data, and to estimate daily water supply from the reservoirs in the Han river basin. Modified DIROM was applied to three test sites, and validated with field data. The relative errors between the simulated and observed water supply were less than 10 percent. Historical records on daily or ten-day’s storage for 110 reservoirs from the twenty Farmland Improvement Associations, FIA were collected and used to estimate the daily water supply during 1993 to 1997. The results were applied to the other 723 reservoirs that are not owned by FIA. The five-year averaged annual water supply from the reservoirs was estimated to be 180 million ㎥/yr. Maximum yearly water supply was recorded to be 190 million ㎥/yr in 1996.

  • PDF

A Study on the Prediction of Sediment Yield and its Elevation in Fresh Desalted Reservoirs (담수호의 침전량과 분포 예측에 관한 연구)

  • 김태철;이재용;윤오섭;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.97-107
    • /
    • 1996
  • This study was performed to derive the formula of sediment yield and predict the sediment elevation for fresh desalted reservoirs. Data analyzed was from 3 fresh desalted reservoirs of Sapkyo, Asan, and Namyang. Average sediment yield calculated from the sediment survey data was $279m^3/km^2/$ year for Sapkyo lake, $523m^3/km^2/$ year for Namyang lake, and $190m^3/km^2/$ year for Asan lake. The trap efficiency for Sapkyo lake was 63%. The formula of sediment yield was derived as $Q_s=6,461{\times}A{^-0.44}$ for fresh desalted reservoir. Sediment yield in fresh desalted reservoirs was much higher than that in inland reservoirs located in the same watershed, because of long trap time in fresh desalted reservoirs.

  • PDF