• Title/Summary/Keyword: Korean phoneme

Search Result 331, Processing Time 0.027 seconds

A Method of the Extraction of Phonemes in Hangeul Recognition (한글 인식에 있어서의 자소추출)

  • ;市川忠男, 藤田廣一
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.36-43
    • /
    • 1981
  • This paper describes a met hod of the extraction of phonemes in Hangout recognition. We provide the direction of strokes aid positional information for analyzing the structure of characters based on the regular combinational rules of Hangout according to Top -Down processing, and show the process of Phoneme extraction seq uencially. In this paper, some processing algorithms are described and simulated. The experiment of the phoneme extraction is carried out for 677 characters actully used daily, and extraction rate of 96% is obtained. The experimental results demonstrate the effectiveness of the proposed method.

  • PDF

Recognition of Restricted Continuous Korean Speech Using Perceptual Model (인지 모델을 이용한 제한된 한국어 연속음 인식)

  • Kim, Seon-Il;Hong, Ki-Won;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.61-70
    • /
    • 1995
  • In this paper, the PLP cepstrum which is close to human perceptual characteristics was extracted through the spread time area to get the temperal feature. Phonemes were recognized by artificial neural network similar to the learning method of human. The phoneme strings were matched by Markov models which well suited for sequence. Phoneme recognition for the continuous Korean speech had been done using speech blocks in which speech frames were gathered with unequal numbers. We parameterized the blocks using 7th order PLPs, PTP, zero crossing rate and energy, which neural network used as inputs. The 100 data composed of 10 Korean sentences which were taken from the speech two men pronounced five times for each sentence were used for the the recognition. As a result, maximum recognition rate of 94.4% was obtained. The sentence was recognized using Markov models generated by the phoneme strings recognized from earlier results the recognition for the 200 data which two men sounded 10 times for each sentence had been carried out. The sentence recognition rate of 92.5% was obtained.

  • PDF

Speech Recognition of Korean Phonemes 'ㅅ', 'ㅈ', 'ㅊ' based on Volatility and Turning Points (변동성과 전환점에 기반한 한국어 음소 'ㅅ', 'ㅈ', 'ㅊ' 음성 인식)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.579-585
    • /
    • 2014
  • A phoneme is the minimal unit of speech, and it plays a very important role in speech recognition. This paper proposes a novel method that can be used to recognize 'ㅅ', 'ㅈ', and 'ㅊ' among Korean phonemes. The proposed method is based on a volatility indicator and a turning point indicator that are calculated for each constituting block of the input speech signal. The volatility indicator is the sum of the differences between the values of each two samples adjacent in a block, and the turning point indicator is the number of extremal points at which the direction of the increment or decrement of the values of the sample are inverted in a block. A phoneme recognition algorithm combines the two indicators to finally determine the positions at which the three target phonemes mentioned above are recognized by utilizing optimized thresholds related with those indicators. The experimental results show that the proposed method can markedly reduce the error rate of the existing methods both in terms of the false reject rate and the false accept rate.

A Study-on Context-Dependent Acoustic Models to Improve the Performance of the Korea Speech Recognition (한국어 음성인식 성능향상을 위한 문맥의존 음향모델에 관한 연구)

  • 황철준;오세진;김범국;정호열;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • In this paper we investigate context dependent acoustic models to improve the performance of the Korean speech recognition . The algorithm are using the Korean phonological rules and decision tree, By Successive State Splitting(SSS) algorithm the Hidden Merkov Netwwork(HM-Net) which is an efficient representation of phoneme-context-dependent HMMs, can be generated automatically SSS is powerful technique to design topologies of tied-state HMMs but it doesn't treat unknown contexts in the training phoneme contexts environment adequately In addition it has some problem in the procedure of the contextual domain. In this paper we adopt a new state-clustering algorithm of SSS, called Phonetic Decision Tree-based SSS (PDT-SSS) which includes contexts splits based on the Korean phonological rules. This method combines advantages of both the decision tree clustering and SSS, and can generated highly accurate HM-Net that can express any contexts To verify the effectiveness of the adopted methods. the experiments are carried out using KLE 452 word database and YNU 200 sentence database. Through the Korean phoneme word and sentence recognition experiments. we proved that the new state-clustering algorithm produce better phoneme, word and continuous speech recognition accuracy than the conventional HMMs.

  • PDF

Phoneme Segmentation in Consideration of Speech feature in Korean Speech Recognition (한국어 음성인식에서 음성의 특성을 고려한 음소 경계 검출)

  • 서영완;송점동;이정현
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • Speech database built of phonemes is significant in the studies of speech recognition, speech synthesis and analysis, Phoneme, consist of voiced sounds and unvoiced ones, Though there are many feature differences in voiced and unvoiced sounds, the traditional algorithms for detecting the boundary between phonemes do not reflect on them and determine the boundary between phonemes by comparing parameters of current frame with those of previous frame in time domain, In this paper, we propose the assort algorithm, which is based on a block and reflecting upon the feature differences between voiced and unvoiced sounds for phoneme segmentation, The assort algorithm uses the distance measure based upon MFCC(Mel-Frequency Cepstrum Coefficient) as a comparing spectrum measure, and uses the energy, zero crossing rate, spectral energy ratio, the formant frequency to separate voiced sounds from unvoiced sounds, N, the result of out experiment, the proposed system showed about 79 percents precision subject to the 3 or 4 syllables isolated words, and improved about 8 percents in the precision over the existing phonemes segmentation system.

  • PDF

Phonetic Transcription based Speech Recognition using Stochastic Matching Method (확률적 매칭 방법을 사용한 음소열 기반 음성 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.696-700
    • /
    • 2007
  • A new method that improves the performance of the phonetic transcription based speech recognition system is presented with the speaker-independent phonetic recognizer. Since SI phoneme HMM based speech recognition system uses only the phoneme transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the speaker dependent system due to the phoneme recognition errors generated from using SI models. A new training method that iteratively estimates the phonetic transcription and transformation vectors is presented to reduce the mismatch between the training utterances and a set of SI models using speaker adaptation techniques. For speaker adaptation the stochastic matching methods are used to estimate the transformation vectors. The experiments performed over actual telephone line shows that a reduction of about 45% in the error rates could be achieved as compared to the conventional method.

Design and Implementation of Simple Text-to-Speech System using Phoneme Units (음소단위를 이용한 소규모 문자-음성 변환 시스템의 설계 및 구현)

  • Park, Ae-Hee;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • This paper is a study on the design and implementation of the Korean Text-to-Speech system which is used for a small and simple system. In this paper, a parameter synthesis method is chosen for speech syntheiss method, we use PARCOR(PARtial autoCORrelation) coefficient which is one of the LPC analysis. And we use phoneme for synthesis unit which is the basic unit for speech synthesis. We use PARCOR, pitch, amplitude as synthesis parameter of voice, we use residual signal, PARCOR coefficients as synthesis parameter of unvoice. In this paper, we could obtain the 60% intelligibility by using the residual signal as excitation signal of unvoiced sound. The result of synthesis experiment, synthesis of a word unit is available. The controlling of phoneme duration is necessary for synthesizing of a sentence unit. For setting up the synthesis system, PC 486, a 70[Hz]-4.5[KHz] band pass filter for speech input/output, amplifier, and TMS320C30 DSP board was used.

  • PDF

Implementation of the Automatic Segmentation and Labeling System (자동 음성분할 및 레이블링 시스템의 구현)

  • Sung, Jong-Mo;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1997
  • In this paper, we implement an automatic speech segmentation and labeling system which marks phone boundaries automatically for constructing the Korean speech database. We specify and implement the system based on conventional speech segmentation and labeling techniques, and also develop the graphic user interface(GUI) on Hangul $Motif^{TM}$ environment for the users to examine the automatic alignment boundaries and to refine them easily. The developed system is applied to 16kHz sampled speech, and the labeling unit is composed of 46 phoneme-like units(PLUs) and silence. The system uses both of the phonetic and orthographic transcription as input methods of linguistic information. For pattern-matching method, hidden Markov models(HMM) is employed. Each phoneme model is trained using the manually segmented 445 phonetically balanced word (PBW) database. In order to evaluate the performance of the system, we test it using another database consisting of sentence-type speech. According to our experiment, 74.7% of phoneme boundaries are within 20ms of the true boundary and 92.8% are within 40ms.

  • PDF

Phoneme Recognition and Error in Postlingually Deafened Adults with Cochlear Implantation (언어습득 이후 난청 성인 인공와우이식자의 음소 지각과 오류)

  • Choi, A.H.;Heo, S.D.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • The aim of this study was to investigate phoneme recognition in postlingually deafened adults with cochlear implantation. 21-cochlear implantee were participated. They was used cochlear implants more than 1 year. In order to measure consonant performance abilities, subjects were asked for 18 items of Korean consonants in a "aCa" condition with audition alone. The scores ranged from 11 to 86 ($60{\pm}17$)%. The consonant performance abilities correlated with implanted hearing threshold level, significantly (p<.046). This results suggest that consonant performance abilities of postlingual deafened adults cochlear implantee be important for implanted hearing. They had higher correct rates for fricatives and affricatives with distinctive frequency bands than for plosives, liquids & nasals with the same or adjacent frequency bands. All subjects had confusion patterns among the consonants of the same manner of articulation. The reason of consonant confusions was caused that they couldn't recognize different intensities and durations of consonants with the same or adjacent frequency bands.

  • PDF

Improvements of an English Pronunciation Dictionary Generator Using DP-based Lexicon Pre-processing and Context-dependent Grapheme-to-phoneme MLP (DP 알고리즘에 의한 발음사전 전처리와 문맥종속 자소별 MLP를 이용한 영어 발음사전 생성기의 개선)

  • 김회린;문광식;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper, we propose an improved MLP-based English pronunciation dictionary generator to apply to the variable vocabulary word recognizer. The variable vocabulary word recognizer can process any words specified in Korean word lexicon dynamically determined according to the current recognition task. To extend the ability of the system to task for English words, it is necessary to build a pronunciation dictionary generator to be able to process words not included in a predefined lexicon, such as proper nouns. In order to build the English pronunciation dictionary generator, we use context-dependent grapheme-to-phoneme multi-layer perceptron(MLP) architecture for each grapheme. To train each MLP, it is necessary to obtain grapheme-to-phoneme training data from general pronunciation dictionary. To automate the process, we use dynamic programming(DP) algorithm with some distance metrics. For training and testing the grapheme-to-phoneme MLPs, we use general English pronunciation dictionary with about 110 thousand words. With 26 MLPs each having 30 to 50 hidden nodes and the exception grapheme lexicon, we obtained the word accuracy of 72.8% for the 110 thousand words superior to rule-based method showing the word accuracy of 24.0%.

  • PDF