• Title/Summary/Keyword: Korean news articles

Search Result 330, Processing Time 0.033 seconds

The Empirical Study on the Effect of Technology Exchanges in the Fourth Industrial Revolution between Korea and China: Focused on the Firm Social Network Analysis (한중 4차산업혁명 기술교류 및 효과에 대한 실증연구: 기업 소셜 네트워크 분석 중심으로)

  • Zhou, Zhenxin;Sohn, Kwonsang;Hwang, Yoon Min;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.41-61
    • /
    • 2020
  • China's rapid development and commercialization of high-tech technologies in the fourth industrial revolution has led to effective technology exchanges between Korean and Chinese firms becoming more important to Korea's mid-term and long-term industrial development. However, there is still a lack of empirical research on how technology exchanges between Korean and Chinese firms proceed and their effectiveness. In response, this study conducted a social network analysis based on text mining data of Korea-China business technology exchange and cooperation articles introduced in the news from 2018 to March 2020 on the current status and effects of Korea-China technology exchanges related to the fourth industrial revolution, and conducted a regression analysis how network centrality effect on the firm performance. According to the results, most of the Korean major electronic firms are actively networking with Chinese firms and institutions, showing high centrality in the centrality index. Korean telecommunication firms showed high betweenness centrality and subgraph centrality, and Korean Internet service providers and broadcasting contents firms showed high eigenvector centrality. In addition, Chinese firms showed higher betweenness centrality than Korean firms, and Chinese service firms showed higher closeness centrality than manufacturing firms. As a result of regression analysis, this network centrality had a positive effect on firm performance. To the best of our knowledge, this is the first to analyze the impact of the technical cooperation between Korean and Chinese firms under the fourth industrial revolution context. This study has theoretical implications that suggested the direction of social network analysis-based empirical research in global firm cooperation. Also, this study has practical implications that the guidelines for network analysis in setting the direction of technical cooperation between Korea and China by firms or governments.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

Park Yeol·Kaneko Humiko Case and Performance (박열·가네코 후미코 사건과 퍼포먼스)

  • Baek, Hyun-Mi
    • Journal of Popular Narrative
    • /
    • v.25 no.2
    • /
    • pp.117-167
    • /
    • 2019
  • The aim of this article is to illuminate the Park Yeol(朴烈)·Kaneko Humiko(金子文子) Case from the perspective of performance, by analyzing newspapers published in Colonial Korea. The Park Yeol·Kaneko Humiko Case include the High Treason Incident(大逆事件) case and the mysterious photo(怪寫眞) case that occurred in Tokyo in Imperial Japan from 1923 to 1926. Even though Park Yeol·Kaneko Humiko were individually imprisoned during this period, they proceeded to act shrewdly and preposterously as performers. First, they made the trial itself into an astonishing case by donning traditional Korean clothes and insisting on using the Korean language in Japanese Imperial Court. Second, they caused the judge in charge to accidentally take the so-called 'mysterious photo,' which later led to the collapse of the Japanese cabinet. The newspapers published in Colonial Korea served as unique stage on which Park Yeol and Kaneko Humiko performed. The newspaper articles reported on the public trials as if it were a drama, describing their clothes, look, and dialogue in public court. The news about them was published not as it occurred but in a plotted sequence because of a press ban, consequentially building suspense among readers. Meanwhile, the Korean newspaper editorials pointed out the injustice of the High Treason Incident, breaking down the Japanese judge's opinion. The Park Yeol·Kaneko Humiko Case was a social drama that revealed the disharmony that led to the breakdown of Taisho Democracy and imprinting national resistance in Japan as well as in Korea.

Collaboration Strategies of Fashion Companies and Customer Attitudes (시장공사적협동책략화소비자태도(时装公司的协同策略和消费者态度))

  • Chun, Eun-Ha;Niehm, Linda S.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.4-14
    • /
    • 2010
  • Collaboration strategies entail information sharing and other varied forms of cooperation that are mutually beneficial to the company and stakeholder groups. This study addresses the specific types of collaboration used in the fashion industry while also examining strategies that have been most successful for fashion companies and perceived benefits of collaboration from the customer perspective. In the present study we define fashion companies and brands as collaborators and their partners or stakeholders as collaboratees. We define collaboration as a cooperative relationship where more than two companies, brands or individuals provide customers with beneficial outcomes utilizing their own competitive advantages on an equal basis. Collaboration strategies entail information sharing and other varied forms of cooperation that are mutually beneficial to the company and stakeholder groups. Through collaboration, fashion companies have pursued both tangible differentiation, such as design and technology applications, and intangible differentiation such as emotional and psychological benefits to customers. As a result, collaboration within the fashion industry has become an important, value creating concept. This qualitative study utilized case studies and in-depth interview methodologies to examine customers' attitudes concerning collaboration in the fashion industry. A total of 173 collaboration cases were identified in Korean and international markets from 1998 through December 2008, focusing on fashion companies. Cases were collected from documented data including websites and industry data bases and top ranked portal search sites such as: Rankey.com; Naver, Daum, and Nate; and representative fashion information websites, Samsungdesignnet and Firstviewkorea. Cases were collected between November 2008 and February 2009. Cases were selected for the analysis where one or more partners were associated with the production of fashion products (excluding textile production), retail fashion products, or designer services. Additional collaboration case information was obtained from news articles, periodicals, internet portal sites and fashion information sites as conducted in prior studies (Jeong and Kim 2008; Park and Park 2004; Yoon 2005). In total, 173 cases were selected for analysis that clearly exhibited the benefits and outcomes of collaboration efforts and strategies between fashion companies and stakeholders. Findings show that the overall results show that for both partners (collaborator and collaboratee) participating in collaboration, that the major benefits are reduction of costs and risks by sharing resource such as design power, image, costs, technology and targets, and creation of synergy. Regarding types of collaboration outcomes, product/design was most important (55%), followed by promotion (21%), price (20%), and place (4%). This result shows that collaboration plays an important role in giving life to products and designs, particularly in the fashion industry which seeks for creative and newness. To be successful in collaboration efforts, results of the depth interviews in this study confirm that fashion companies should have a clear objective on why they are doing the collaboration. After setting the objective, they should select collaboratees that match their brand image and target market, make quality co-products that have definite concepts and differentiating factors, and also pay attention to increasing brand awareness. Based on depth interviews with customers, customer benefits were categorized into six factors: pursuit for individual character; pursuit for brand; pursuit for scarcity; pursuit for fashion; pursuit for economic efficiency; and pursuit for sociality. Customers also placed more importance on image, reputation, and trust of brands regarding the cases shown in the interviews. They also commented that strong branding should come first before other marketing strategies. However, success factors recognized by experts and customers in this study showed different results by subcategories. Thus, target customers and target market should be studied from various dimensions to develop appropriate strategies for successful collaboration.

Success Factor in the K-Pop Music Industry: focusing on the mediated effect of Internet Memes (대중음악 흥행 요인에 대한 연구: 인터넷 밈(Internet Meme)의 매개효과를 중심으로)

  • YuJeong Sim;Minsoo Shin
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.48-62
    • /
    • 2023
  • As seen in the recent K-pop craze, the size and influence of the Korean music industry is growing even bigger. At least 6,000 songs are released a year in the Korean music market, but not many can be said to have been successful. Many studies and attempts are being made to identify the factors that make the hit music. Commercial factors such as media exposure and promotion as well as the quality of music play an important role in the commercial success of music. Recently, there have been many marketing campaigns using Internet memes in the pop music industry, and Internet memes are activities or trends that spread in various forms, such as images and videos, as cultural units that spread among people. Depending on the Internet environment and the characteristics of digital communication, contents are expanded and reproduced in the form of various memes, which causes a greater response to consumers. Previously, the phenomenon of Internet memes has occurred naturally, but artists who are aware of the marketing effects have recently used it as an element of marketing. In this paper, the mediated effect of Internet memes in relation to the success factors of popular music was analyzed, and a prediction model reflecting them was proposed. As a result of the analysis, the factors with the mediated effect of 'cover effect' and 'challenge effect' were the same. Among the internal success factors, there were mediated effects in "Singer Recognition," the genres of "POP, Dance, Ballad, Trot and Electronica," and among the external success factors, mediated effects in "Planning Company Capacity," "The Number of Music Broadcasting Programs," and "The Number of News Articles." Predictive models reflecting cover effects and challenge effects showed F1-score at 0.6889 and 0.7692, respectively. This study is meaningful in that it has collected and analyzed actual chart data and presented commercial directions that can be used in practice, and found that there are many success factors of popular music and the mediating effects of Internet memes.

A Study on the increase of space debris from Chinese Anti-Satellite and breach of the Outer Space Treaty (자국위성(自國衛星)의 파괴(破壞)에 따른 우주잔해의 증가와 우주조약위반(宇宙條約違反) 여부에 관한 소고(小考) - 중국의 자국위성파괴와 관련하여 -)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.259-294
    • /
    • 2013
  • After its experiment involving the exploding of a satellite in space in 2007, China proudly aired news on TV and ran articles in newspapers. However, the event was internationally criticized and drew widespread attention. Many countries denounced the explosion by pointing out that it could be part of the nation's plan to expand its military power to space or that it could pose a danger to the peaceful use of space. However, there is no talk of whether the experiment that produced a huge amount of space debris could have violated an international law, namely the Outer Space Treaty. Although space garbage has been said to be a serious problem, the amount is still on the increase. If we continue to launch new space launch vehicles into orbit at this rate, we will not be able to use it anytime soon like we do today. As the commercial use of space is likely to increase, the situation will certainly get worse. The international community is fully aware of the seriousness of the problem and working together to reduce the amount of space garbage. However, despite the fact that the United States and Soviet Union's ASAT(Anti-Satellite) programs have been implemented for a long time, there have been no complaints about them in terms of military expansion or breach of the Outer Space Treaty. Also, the recent Chinese test is largely viewed to be in accordance with international law. A lot of research has been undertaken with regard to the problem of space garbage. Now people's awareness of dangers being posed has been fully raised. Under the circumstances, the dismissing of China's satellite smashing, leaving a big mess in its wake, as nothing more than an experiment, is a red flag to, if not many, at least some people. By means of this thesis, I would like to review whether the Chinese test has violated an international space law. This thesis presents an overview of the issues surrounding the event and examines the possibility of violating the Outer Space Treaty, formally the Treaty on Principle Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies. After the China test, the UN Scientific and Technical Subcommittee first adopted space debris mitigation guidelines, I'll introduce the content of the guidelines and discuss the characteristics of the guidelines and what can be done to address the issue.

  • PDF

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Analysis of Metadata Standards of Record Management for Metadata Interoperability From the viewpoint of the Task model and 5W1H (메타데이터 상호운용성을 위한 기록관리 메타데이터 표준 분석 5W1H와 태스크 모델의 관점에서)

  • Baek, Jae-Eun;Sugimoto, Shigeo
    • The Korean Journal of Archival Studies
    • /
    • no.32
    • /
    • pp.127-176
    • /
    • 2012
  • Metadata is well recognized as one of the foundational factors in archiving and long-term preservation of digital resources. There are several metadata standards for records management, archives and preservation, e.g. ISAD(G), EAD, AGRkMs, PREMIS, and OAIS. Consideration is important in selecting appropriate metadata standards in order to design metadata schema that meet the requirements of a particular archival system. Interoperability of metadata with other systems should be considered in schema design. In our previous research, we have presented a feature analysis of metadata standards by identifying the primary resource lifecycle stages where each standard is applied. We have clarified that any single metadata standard cannot cover the whole records lifecycle for archiving and preservation. Through this feature analysis, we analyzed the features of metadata in the whole records lifecycle, and we clarified the relationships between the metadata standards and the stages of the lifecycle. In the previous study, more detailed analysis was left for future study. This paper proposes to analyze the metadata schemas from the viewpoint of tasks performed in the lifecycle. Metadata schemas are primarily defined to describe properties of a resource in accordance with the purposes of description, e.g. finding aids, records management, preservation and so forth. In other words, the metadata standards are resource- and purpose-centric, and the resource lifecycle is not explicitly reflected in the standards. There are no systematic methods for mapping between different metadata standards in accordance with the lifecycle. This paper proposes a method for mapping between metadata standards based on the tasks contained in the resource lifecycle. We first propose a Task Model to clarify tasks applied to resources in each stage of the lifecycle. This model is created as a task-centric model to identify features of metadata standards and to create mappings among elements of those standards. It is important to categorize the elements in order to limit the semantic scope of mapping among elements and decrease the number of combinations of elements for mapping. This paper proposes to use 5W1H (Who, What, Why, When, Where, How) model to categorize the elements. 5W1H categories are generally used for describing events, e.g. news articles. As performing a task on a resource causes an event and metadata elements are used in the event, we consider that the 5W1H categories are adequate to categorize the elements. By using these categories, we determine the features of every element of metadata standards which are AGLS, AGRkMS, PREMIS, EAD, OAIS and an attribute set extracted from DPC decision flow. Then, we perform the element mapping between the standards, and find the relationships between the standards. In this study, we defined a set of terms for each of 5W1H categories, which typically appear in the definition of an element, and used those terms to categorize the elements. For example, if the definition of an element includes the terms such as person and organization that mean a subject which contribute to create, modify a resource the element is categorized into the Who category. A single element can be categorized into one or more 5W1H categories. Thus, we categorized every element of the metadata standards using the 5W1H model, and then, we carried out mapping among the elements in each category. We conclude that the Task Model provides a new viewpoint for metadata schemas and is useful to help us understand the features of metadata standards for records management and archives. The 5W1H model, which is defined based on the Task Model, provides us a core set of categories to semantically classify metadata elements from the viewpoint of an event caused by a task.