• Title/Summary/Keyword: Korean leek

Search Result 160, Processing Time 0.032 seconds

Changes in Carotene Content of Chinese Cabbage Kimchi Containing Various Submaterials and Lactic Acid Bacteria during Fermentation (배추김치의 숙성중 부재료와 젖산균에 따른 Carotene 의 함량변화)

  • 장경숙;김미정;오영애;강명수;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 1991
  • the Chinese cabbage kimchi was fermented with the various submaterials such as hot pep-per garlic ginger leek green onion fermented anchovy juice and sugar according to the average contents of each submaterial described in the 39 kinds of references. And then the effects of each submaterial and lactic acid bacteria such as L. brevis. Leu. mesenteroides. P cerevisiae and L. plantarum on the content of carotenes were investigated, The major carotene in kimchi was $\beta$-carotene. And also $\delta$-carotene and $\alpha$-carotene were detected. Contents of $\beta$-carotene and total carotene were high in the kimchi containing leek red pepper powder green onion and fermented anchovy juice as a submaterial. But the kimchi containing or omitting the other submaterials were litter affected to the contents of carotene. Contents of $\beta$-carotene and total carotene were high in kimchi fermented with Leu. msenteroides L. brevis and P. cerevi-siae as a starter but was low with L plasntarum.

  • PDF

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Anticlastogenic Effect of Bcechu (Chinese cabbage) Kimchi and Buchu (leek) Kimchi in mitomycin C-induced micronucleus formations by supravital staining of mouse peripheral reticulocytes (Mitomycin C 유도 소핵 생성 유발에 대한 배추김치 및 부추김치 추출물의 마우스 말초혈에서의 억제 효과)

  • 류재천;박건영
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • Kimchi is a major Korean traditional fermented food, as a supplying source of vitamin and minerals which is prepared with various vegetables and condiments such as red pepper, garlic and salted fish etc. There are many types of Kimchi depending on the ingredients and preparation methods used. To investigate the clastogenicity and anticlastogenicity of Baechu (Chinese cabbage) Kimchi and Buchu (leek, Allium odorum) Kimchi in mouse, it was performed acridine orange supravital staining of micronucleus (AOSS-MN) assay using mouse peripheral reticulocytes. Baechu Kimchi and Buchu Kimchi were cultivated by organic agricultural technique, and Kimchi samples were prepared by methanol extraction and lyophilization. First of all, it was studied the clastogenicity of two Kimchi samples themselves (250-1,000 mg/kg) after oral adminstration in mouse. And also to study the anticlastogenic effect of oral administration of Kimchi samples, mitomycin C (MMC, 1 mg/kg, i.p.) was used as micronucleus inducing agent in this study. Dosing scheme was performed as simultaneous (co-treatment), 3 hr before (pre-treatment) and 3 hr after (post-treatment) with MMC treatment. Two Kimchi samples in the range of 250-1,000 mg/kg did not reveal any clastogenic effect in AOSS-MN assay in mouse. They also revealed anticlastogenic effects in post-treatment of Baechu Kimchi (1,000 mg/kg), and in pre-treatment of Buchu Kimchi (500 and 1,000 mg/kg) with statistical significance. The anticlastogenic effect revealed 1 and 6 hr after treatment of Baechu Kimchi, and Buchu Kimchi with 3 and 6 hr pretreatment. Consequently, it is suggested that antimutagenic and anticlastogenic mechanisms of Baechu and Buchu Kimchi in vivo attributed to sipindle formation and kinetic behavior of mutagens such as absorption and metabolism etc.

  • PDF

A Study on Buchu(Leek, Aillium odorum) Kimchi-Changes in Chemical, Microbial and Sensory Properties, and Antimutagenicity of Buchu Kimchi during Fermentation

  • Lee, Kyeoung-Im;Jung, Keun-Ok;Rhee, Sook-Hee;Suh, Myung-Ja;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • This study was conducted to investigate the changes in chemical, microbial and sensory characteristics, and antimutagenicity of buchu(leek, Allium odorum) kimchi during fermentation at 15$^{\circ}C$. Reducing sugar contents and pH of buchu kimchi were decreased during the fermentation. The reduction rate of reducing sugar of glutinous rice paste and shrimp added buvhu kimchi(GSBK) was faster than those of control buchu kimchi(CBK) and glutious rice paste added bucku kimchi(GBK). Acidity increased rapidly until 4 days,a nd optimum acidity (0.6%) of bucku kimchi was reached within 2 day. Also total bacterial and lactic acid bacterial counts greatly increased after 4 days of the fermentation. The numbers of lactic acid bacteria after 8 day- fermentation in CBK and GSBK, and 10 day-fermentation in GBK were the highest values, 4.5$\times${TEX}$10^{8}${/TEX} CFU/ml, 4.8$\times${TEX}$10^{8}${/TEX} CFU/ml and 6.1$\times${TEX}$10^{8}${/TEX} CFU/ml, respectively. In the sensory evaluation, appearance of sample was good at 0 day, taste from overall quality of buchu kimchi were asquired the highest values at 6th day. The methanol extracts from buchu kimchi(GBK) showed antimutagenicity against aflatoxin {TEX}$B_{1}${/TEX}({TEX}$AFB_{1}${/TEX})in Salmonella typhimurium TA100. The inhibition ration were 58~69% with treatment of the 5% methanol extracts, and when the adding concentration increased the effect increased.

  • PDF

Leek Yellow Stripe Virus Can Adjust for Host Adaptation by Trimming the N-Terminal Domain to Allow the P1 Protein to Function as an RNA Silencing Suppressor

  • Sasaki, Jun;Kawakubo, Shusuke;Kim, Hangil;Kim, Ok-Kyung;Yamashita, Kazuo;Shimura, Hanako;Masuta, Chikara
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.383-394
    • /
    • 2022
  • In Japan, the P1 protein (S-type) encoded by leek yellow stripe virus (LYSV) isolates detected in Honshu and southward is shorter than the P1 (N-type) of LYSV isolates from garlic grown in Hokkaido due to a large deletion in the N-terminal half. In garlic fields in Hokkaido, two types of LYSV isolate with N- and S-type P1s are sometimes found in mixed infections. In this study, we confirmed that N- and S-type P1 sequences were present in the same plant and that they belong to different evolutionary phylogenetic groups. To investigate how LYSV with S-type P1 (LYSV-S) could have invaded LYSV with N-type P1 (LYSV-N)-infected garlic, we examined wild Allium spp. plants in Hokkaido and found that LYSV was almost undetectable. On the other hand, in Honshu, LYSV-S was detected at a high frequency in Allium spp. other than garlic, suggesting that the LYSV-S can infect a wider host range of Allium spp. compared to LYSV-N. Because P1 proteins of potyviruses have been reported to promote RNA silencing suppressor (RSS) activity of HC-Pro proteins, we analyzed whether the same was true for P1 of LYSV. In onion, contrary to expectation, the P1 protein itself had RSS activity. Moreover, the RSS activity of S-type P1 was considerably stronger than that of N-type P1, suggesting that LYSV P1 may be able to enhance its RSS activity when the deletion is in the N-terminal half and that acquiring S-type P1 may have enabled LYSV to expand its host range.