• Title/Summary/Keyword: Korean historical earthquakes

Search Result 47, Processing Time 0.023 seconds

K-function Test for he Spatial Randomness among the Earthquakes in the Korean Peninsula

  • Baek, Jangsung;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.499-505
    • /
    • 2001
  • Kim and Baek (2000) tested the spatial randomness for he earthquake occurrence in the Korean Peninsula by using the nearest-neighbor test statistics and empirical distribution functions. The K-function, however, has obvious advantages over the methods used in Kim and Baek (2000), such as it does not depend on the shape of the study region and is an effective summary of spatial dependence over a wide range of scales. We applied the K-function method for testing the randomness to both of the historical and the instrumental seismicity data. It was found that he earthquake occurrences for historical and instrumental seismicity data are not random and clustered rather than scattered.

  • PDF

Study on Physical Characteristics of Historical and Artificial Ground Accelration (역사지진 및 인공지진의 물리적특성에 관한 연구)

  • 전환석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.52-57
    • /
    • 1998
  • Becaruse of the continual occurrence of minor and moderate earthquake in Korean peninsula, it is generally considered that Korean is nor located in safe region against probable earthquake and more, even though being recognized as a safe contry in earthquake. It is in particular noted that nowadays there has been much concern about undesirable disaster due to unexpected earthquake since the disaster of 1995 Kobe earthquake. Thus, the objective of this research is to develop appropriate design spectrum which could be practicably used in seismic design of important structures taking into consideration of local physical characteristics. Particularly, we have to keep in mind the lessons from 1985 Mexico earthquake which had disregarded deep research on local ground conditions, being a possible magnification phenomena of ground motions in weak soil layer. Various spectra has been described based on the analysis of historical earthquakes, and appropriate design spectrum has been proposed herein.

  • PDF

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

Rapid Earthquake Location for Earthquake Early Warning (지진조기경보를 위한 신속 진앙위치 결정)

  • Kim, Kwang-Hee;Rydelek, Paul A.;Suk, Bong-Chool
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.73-79
    • /
    • 2008
  • Economic growth, industrialization and urbanization have made society more vulnerable than ever to seismic hazard in Korea. Although Korea has not experienced severe damage due to earthquakes during the last few decades, there is little doubt of the potential for large earthquakes in Korea as documented in the historical literature. As we see no immediate promise of short-term earthquake prediction with current science and technology, earthquake early warning systems attract more and more attention as a practical measure to mitigate damage from earthquakes. Earthquake early warning systems provide a few seconds to tens of seconds of warning time before the onset of strong ground shaking. To achieve rapid earthquake location, we propose to take full advantage of information from existing seismic networks; by using P wave arrival times at two nearest stations from the earthquake hypocenter and also information that P waves have not yet arrived at other stations. Ten earthquakes in the Korean peninsula and its vicinity are selected for the feasibility study. We observed that location results are not reliable when earthquakes occur outside of the seismic network. Earthquakes inside the seismic network, however, can be located very rapidly for the purpose of earthquake early warning. Seoul metropolitan area may secure $10{\sim}50$ seconds of warning time before any strong shaking starts for certain events. Carefully orchestrated actions during the given warning time should be able to reduce hazard and mitigate damages due to potentially disastrous earthquakes.

Study on Physical Characteristics of Historical and Artificial Ground Acceleration (역사지진 및 인공지진의 물리적 특성에 관한 연구)

  • 이대형;정영수;전환석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • Because of the continual occurrence of minor and moderate earthquakes in Korean peninsula, it is generally considered that Korean is not located in a safe region against probable earthquake any more, even though being recognized as a safe country in earthquake. It is in particular noted that nowadays there has been much concern about unexpected tragedy due to probable earthquake since the disaster of 1995 kobe earthquake. Thus, the objective of this research is to develop appropriate design spectrum which could be practicably used in seismic design of important structures taking into consideration of local physical characteristics. Particularly, we have to keep in mind the lessons from 1985 Mexico earthquake which had disregarded deep research on local ground conditions, being a possible magnification phenomena of ground motions in weak soil layer. Various spectra has been described based on the analysis of historical earthquakes, and generate the artificial ground acceleration. Also, rational numbers of artificial ground acceleration is investigated by the seismic analysis for skew slab bridges.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Hydroacoustic Records and Numerical Models of the Source Mechanisms from the First Historical Eruption of Anatahan Volcano, Mariana Islands

  • Park M.;Dziak R.P.;Matsumoto H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.232-237
    • /
    • 2004
  • Anatahan Volcano in the Commonwealth of the Northern Mariana Islands (CNMI) erupted for the first time in recorded history on 10 May 2003. The underwater acoustic records of earthquakes, explosions, and tremor produced during the eruption were recorded on a sound-channel hydrophone deployed in February 2003. Acoustic propagation models show the seismic to acoustic conversion at Anatahan is particularly efficient, aided by the slope of the seamount toward the hydrophone. The hydrophone records confirm the onset of earthquake activity at 01:53Z on 10 May, as well as the onset (at ${\~}$06:20Z) of continuous, low-frequency (5-40 Hz) acoustic energy that is likely volcanic tremor related to magma intrusion. The hydrophone recorded a total of 458 earthquakes associated with the eruption. To predict the character of acoustic signals generated from Anatahan, we developed a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of the magma. A buried magmatic pipe model was adopted, and numerically modeling source parameters such as the pipe radius and magma viscosity enable us to grasp the inward nature of Anatahan Volcano.

  • PDF

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

Evaluation of Site-specific Seismic Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역에 대한 부지 고유의 지진 응답 특성 평가)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo;Kim, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.1-13
    • /
    • 2007
  • In order to evaluate the local site effects at two town fortress areas in Korea where stone parapets were col-lapsed by historical earthquakes, site characteristics were assessed using site investigations such as borehole drillings and seismic tests. Equivalent-linear site response analyses were conducted based on the shear ways velocity ($V_s$) profiles and geotechnical characteristics determined from site investigations. The study sites are categorized as site classes C and B according to the mean $V_s$ to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in the short period range of 0.06 to 0.16 sec, which contains the natural period of fortress wall and stone parapet. From the results of site response analyses in the study areas, for site class C indicating most of site conditions, contrary to site class B, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_a$ and $F_v$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the high amplification in short period range, which represent the site-specific seismic response characteristics. These site-specific response characteristics indicate the potential of resonance in fortress walls during earthquake and furthermore could strongly affect the collapse of parapets resulted from seismic events in historical records.

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.