• Title/Summary/Keyword: Korean high-level waste repository

Search Result 148, Processing Time 0.027 seconds

A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository (고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정)

  • Yoon, Seok;Lee, Min-Soo;Kim, Geon-Young;Lee, Seung-Rae;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.55-64
    • /
    • 2017
  • A geological repository has been considered one of the most adequate options for the disposal of high-level radioactive waste. A geological repository will be constructed in a host rock at a depth of 500~1,000 meters below the ground surface. The geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is very important to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. High temperature in a disposal canister is released into the surrounding buffer material, and thus the thermal transfer behavior of the buffer material is very important to analyze the entire disposal safety. Therefore, this paper presents a thermal conductivity prediction model for the Kyungju compacted bentonite buffer material which is the only bentonite produced in Korea. Thermal conductivity of Kyungju bentonite was measured using a hot wire method according to various water contents and dry densities. With 39 data obtained by the hot wire method, a regression model to predict the thermal conductivity of Kyungju bentonite was suggested.

Establishing the Concept of Buffer for a High-level Radioactive Waste Repository: An Approach (고준위폐기물처분장의 완충재 개념 도출: 접근방안)

  • Lee, Jae Owan;Lee, Minsoo;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The buffer is a key component of the engineered barrier system in a high-level radioactive waste (HLW) repository. The present study reviewed the requirements and functional criteria of the buffer reported in literature, and also based on the results, proposed an approach to establish a buffer concept which is applicable to an HLW repository in Korea. The hydraulic conductivity, radionuclide-retarding capacity (equilibrium distribution coefficient and diffusion coefficient), swelling pressure, thermal conductivity, mechanical properties, organic carbon content, and illitization rate were considered as major technical parameters for the functional criteria of the buffer. Domestic bentonite (Ca-bentonite) and, as an alternative, MX-80 (Na-bentonite) were proposed for the buffer of an HLW repository in Korea. The technical specifications for those proposed bentonites were set to parameter values that conservatively satisfy Korea's functional criteria for the Ca-bentonite and Swedish criteria for the Na-bentonite. The thickness of the buffer was determined by evaluating the means of shear behavior, radionuclide release, and heat conduction, which resulted in the proper buffer thickness of 0.25 to 0.5 m. However, the final thickness of the buffer should be determined by considering coupled thermal-hydraulic-mechanical evaluation and economics and engineering aspects as well.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Draft List and Relative Importance of Principal Processes in the Geosphere to be Considered for the Radiological Safety Assessment of the Domestic Geological Disposal Facility through Analyzing FEPs for KBS-3 Type Disposal Repository of High-level Radioactive Waste(HLW) (KBS-3 방식 고준위방폐물 심층처분장 FEP 분석을 통한 국내 사용후핵연료 심층처분시설 방사선학적 안전성 평가용 지권영역 주요 프로세스 항목 및 상대적 중요도 도출)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2023
  • The deep geological repository of high-level radioactive waste shall be designed to meet the safety objective set in the form of radiation dose or corresponding risk to protect human and the environment from radiation exposure. Engineering feasibility and conformity with the safety objective of the facility conceptual design can be demonstrated by comparing the assessment result using the computational model for scenario(s) describing the radionuclide release and transport from repository to biosphere system. In this study, as the preliminary study for developing the high-level radioactive waste disposal facility in Korea, we reviewed and analyzed the entire list of FEPs and how to handle each FEP from a general point of view, which are selected for the geosphere region in the radiological safety assessment performed for the license application of the KBS-3 type deep geological repository in Finland and Sweden. In Finland, five FEPs (i.e., stress redistribution, creep, stress redistribution, erosion and sedimentation in fractures, methane hydrate formation, and salt exclusion) were excluded or ignored in the radionuclide release and transport assessment. And, in Sweden, six FEPs (i.e., creep, surface weathering and erosion, erosion/sedimentation in fractures, methane hydrate formation, radiation effects (rock and grout), and earth current) were not considered for all time frames and earthquake out of a total of 25 FEPs for the geosphere. Based on these results, an FEP list (draft) for the geosphere was derived, and the relative importance of each item was evaluated for conducting the radiological safety assessment of the domestic deep geological disposal facility. Since most of information on the disposal facility in Korea has not been determined as of now, it is judged that all FEP items presented in Table 3 should be considered for the radiological safety assessment, and the relative importance derived from this study can be used in determining whether to apply each item in the future.

The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook

  • Vomvoris, S.;Claudel, A.;Blechschmidt, I.;Muller, H.R.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.9-27
    • /
    • 2013
  • Nagra was established in 1972 by the Swiss nuclear power plant operators and the Federal Government to implement permanent and safe disposal of all types of radioactive waste generated in Switzerland. The Swiss Nuclear Energy Act specifies that these shall be disposed of in deep geological repositories. A number of different geological formations and sites have been investigated to date and an extended database of geological characteristics as well as data and state-of-the-art methodologies required for the evaluation of the long-term safety of repository systems have been developed. The research, development, and demonstration activities are further supported by the two underground research facilities operating in Switzerland, the Grimsel Test Site and the Mont Terri Project, along with very active collaboration of Nagra with national and international partners. A new site selection process was approved by the Federal Government in 2008 and is ongoing. This process is driven by the long-term safety and feasibility of the geological repositories and is based on a step-wise decision-making approach with a strong participatory component from the affected communities and regions. In this paper a brief history and the current status of the Swiss radioactive waste management program are presented and special characteristics that may be useful beyond the Swiss program are highlighted and discussed.

Engineering-scale Test for Validating the T-H-M Behavior of a HLW Repository: Experimental Set-up

  • Lee, Jae-Owan;Baik, Min-Hoon;Cho, Won-Jin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.194-198
    • /
    • 2004
  • The thermo-hydro-mechanical (T-H-M) process is one of major issues in the performance assessment of a high level waste (HLW) repository. An engineering-scale test was planned and its experimental set-up has being installed, to validate the T-H-M behavior in the buffer of a reference disposal system. The experimental set-up consists of 4 major components: the confining cylinder with its hydration water tank, the bentonite block, the heating system, and the sensors and instruments. The monitoring and data acquisition system is employed to control the heater to maintain the temperature of $95^{\circ}C$ at the interface of the heater and bentonite blocks and to collect signals from sensors and instruments installed in the bentonite blocks.

  • PDF

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

Post Closure Long Term Safety of an Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장에서 초기 용기 파손 시나리오의 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-232
    • /
    • 2003
  • A waste container, one of the key compartments in a multi-barrier system for a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic strata and the swelling pressure of the bentonite buffer. Also, it prohibits potential release of radionuclides for a certain period of time. before it is corroded by impurities. Even though the materials of a waste container is carefully chosen and all manufacturing processes are under heavy quality assurance, there might be a slight chance of intial defects in a waste container. Also, during the deposition of a waste container in a repository, there might be a chance of an incident affecting the integrity of a waste container. In this study, the FEP's and the scenarios over radiological impact of a potential initial waste container defect was developed. Then the total system performance assessment on this initial waste container failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set studied in this paper, the annual individual dose by the ICF scenario well meets the KINS regulation.

  • PDF

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository