• Title/Summary/Keyword: Korean ground motion

Search Result 623, Processing Time 0.031 seconds

The study on the semi-active suspension system for bicycle (자전거용 반능동 현가기구 개발에 관한 연구)

  • Ju, Hyung-Jun;Kin, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.775-780
    • /
    • 2011
  • This paper represents the study on the development of semi-active bicycle suspension system. The road vibration and transmissibility of front suspension are obtained by driving test on proving ground. The numerical simulation is evaluated by dynamic system modeling and equation of motion. The numerical simulation are performed to estimate the optimal damping force for minimal vibration transmission. And oscillating displacement is calculated and analyzed. Therefore the stoke which convert the damping characteristics is suggested from the driving test and numerical simulation.

  • PDF

RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD (TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어)

  • 김홍진;김형섭;안상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

Development of Functional Sports-brassiere (기능적 Sports-brassiere 개발에 관한 연구)

  • 최혜선;손부현
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.3
    • /
    • pp.452-466
    • /
    • 1996
  • The purpose of this study is to proviede basic data for designing sports-brassiere by a questionnaire survey about sports-brassieres preferences and physiological wearing test. The results of the survey and the physiological wearing tests on sports-brassieres are as follow; 1. According to the survey, dissatisfied factors on the sports-brassiere are "drooping and vibrating of the breasts". Preferable factors are supporting breasts by stretch and seldom changing its position by motion. The bigger cup-size and more hemispherical-type causes more discontent than flat-type. 2. The shape of breasts is oval, on what ground, horizontal line is longer than vertical. For the cross section of bust line, shirts type.brassiere is more gently curved than cup-brassiere. 3. The feeling of wearing comfort is correlated with bust.up, shield, close adhesion. The vibration of breasts is correlated with covering urea and close adhesion, and the changing band's position by movement, close adhesion. Too much covering area or strain are in inverse correlation of the comfort. 4. The rate of prevention of vibration is 75~80% on superior sports-brassieres, which has broad covering area and excellent close adhesion. adhesion.

  • PDF

Generation of Design Response Spectrum and Earthquake Ground Motion Considering the Recurrence Period (재현주기에 따른 응답스펙트럼과 설계지반운동 산정방법)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.58-65
    • /
    • 1998
  • A purpose of this research is to develope the calculation methods of design input seismic loads, Where, calculation methods are ; (1) Considering different recurrence period of earthquakes which was proposed by ATC 14. (2) Using earthquake records which was modified Korean codes. Responce spectra that was adopted by codes has an estimated recurrence interval of 500 years, with approximately a 90 percent probability of not being exceeded in 50 years. But If we considered the life-time of existing buildings in some cases, response spectra be modified with return period of earthquakes. If we be design highrise and irregular buildings, dynamic analysis method that use time history records should be used. But in Korea, time history records of earthquakes was very few. Therefore to use foreign countries's earthquake record, it is need to select of records considered Korean coeds. As a results, this study propose a calculation method of seismic design input loads that considered return period of earthquakes and also propose using method of earthquakes.

  • PDF

Aiming at "All Soils All States All Round Geo-Analysis Integration"

  • Asaoka, Akira;Noda, Toshihiro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.3-26
    • /
    • 2009
  • Superloading yield surface concept is newly introduced together with subloading yield surface conception in order to describe full gradation continuously of the mechanical behavior of soils from typical sand through intermediate soil to typical clay (All Soils). Finite deformation theory has been applied to the soil skeleton-pore water coupled continuum mechanics, which enables us to discuss things in a perpetual stream from stable state to unstable state like from deformation to failure and vice versa like from liquefaction to post liquefaction consolidation of sand (All States). Incremental form of the equation of motion has been employed in the continuum mechanics in order to incorporate a rate type constitutive equation, which is "All Round" enough to predict ground behavior under both static and dynamic conditions. The present paper is the shortened version of the lecture note delivered in 2008 Theoretical and Applied Mechanics Conference, Science Council Japan, but with newly developed application examples.

  • PDF

Can a Skier Make a Circular Turn without any Active Movement?

  • Youn, Sun-Hyun
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1410-1419
    • /
    • 2018
  • A skier's motion was analyzed by a simple model consist of point mass m and a single rod connected to a single ski plate. We studied the conditions for the stable ski turn as functions of the linear velocity and the radius of the turn. The solutions for the stable ski turn in our model do not require any extra skier's movement to complete a stable circular turn. The solution may then give the skier the most comfortable skiing method without any active movement to control the ski. The generalized force supporting the point mass from the ski plate was calculated. We obtained the force from the ground (rebound force) without any geometrical structure of the ski plate. Adding an active movement to the direction of the ski plate, the conditions for the stable ski turn were also analyzed. Our result gives some insight for the skier who wants to develop technique.

Camera Rotation Calculation Based on Inner Product (벡터내적 기반 카메라 자세 추정)

  • Chon, Jae-Choon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.641-644
    • /
    • 2008
  • In order to improve a camera rotation calculation based on the bundle adjustment in Chon's camera motion (Chon and Shankar, 2007, 2008), this paper introduces a method calculating the camera rotation. It estimates a unit vector in the optical axis of a camera through the angles between the optical axis and vectors passing a camera position and ground control points (GCP). The camera position is estimated by using the inner product method proposed by Chon. The horizontal and vertical unit vectors of the camera are determined by using Yakimovsky and Cunningham's camera model (CAHV) (1978).

Dynamic Earth Pressure on Embedded Structure

  • Sadiq, Shamsher;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • Dynamic earth pressure is considered an important parameter in the design of embedded structures. In current engineering design simplified methods developed either for yielding or non-yielding structures are utilized to predict resultant dynamic pressure. The applicability of these equations to embedded structures have not yet been reported. In this study we perform a suite of equivalent linear time history analysis for a range of embedded structure configurations. Numerically calculated dynamic pressure is shown to depend on the flexibility ratio (F), aspect ratio (L/H) of the embedded structure, and ground motion. Increase in L/H and intensity increases the magnitude of dynamic pressure. An increase in F decreases the dynamic pressure. Overall, the trends highlight the need for development of new method that accounts for F and L/H to calculate the dynamic pressure for the performance-based design of embedded structures.

Reducing Effect Analysis on Earthquake Response of 100m Spanned Single-Layered Lattice Domes With LRB Seismic Isolation System (LRB 면진 장치를 갖는 100m 단층 래티스 돔의 지진 응답에 대한 감소 효과 분석)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.53-64
    • /
    • 2019
  • The objective of this study is to investigate the earthquake response for the design of 100m spanned single-layer lattice dome. The plastic hinge analysis and eigenvalue buckling analysis are performed to estimate the ultimate load of single-layered lattice domes under vertical loads. In order to ensure the stability of lattice domes, it is investigated for the plastic hinge progressive status by the pushover increment analysis considering the elasto-plastic connection. One of the most effective methods to reduce the earthquake response of large span domes is to install the LRB isolation system of a dome. The authors discuss the reducing effect for the earthquake dynamic response of 100m spanned single-layered lattice domes. The LRB seismic isolation system can greatly reduce the dynamic response of lattice domes for the horizontal and vertical earthquake ground motion.

A Study of Dynamic Balance Control between Golfer and Non-golfer (골프 선수와 일반 성인의 동적 균형 제어에 대한 연구)

  • Park, Jun-Sung;Lim, Young-Tae;Lee, Jae-Woo;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Objective: The purpose of this study was to identify the effect of dynamic postural balance control against tilting platform between golfers and non-golfers. Method: 24 golfers and 26 non-golfers were participated. Eight motion capture cameras, two force plates, and one dynamic balance control platform were used for sensory perception test. It was performed two-way repeated ANOVA with a Bonferroni adjustment at a significant level of a 0.05. Results: Golfers' perception ability was higher than non-golfer according to slope. the CoP, time, angle variables were indicated main effect and interaction effect between golfer and non-golfer. Conclusion: It was known that golfer's proprioception perception ability was higher than non-golfers. Repeated practice such as shots and putting on the uneven ground might improve their balance control.