• Title/Summary/Keyword: Korean ground motion

Search Result 623, Processing Time 0.027 seconds

Relationship between Hip Medial Rotation Range of Motion and Weight Distribution in Patients with Low Back Pain

  • Kim, Sang-Kyu;Kim, Won-Bok;Ryu, Young-Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2014
  • PURPOSE: This study intended to verify whether there was actual correlation between weight-bearing asymmetry and a limitation in hip joint rotation range in patients with low back pain. METHODS: Thirty five low back pain patients voluntarily participated this study. For each participant, hip joint medial rotation symmetry rate and the weight-bearing symmetry rate were calculated. The correlation between the two variables was investigated. RESULTS: A decrease in the left hip joint medial rotation range of motion (ROM) was observed more often than a reduction in the right hip joint medial rotation ROM. However, similar number between right and left side was observed in ground reaction force more weighted. The coefficient between the passive hip joint medial rotation symmetry rate and the weight loading symmetry ratio was -0.19 (p < 0.05). CONCLUSION: The present study demonstrated a weak correlation between the hip joint medial rotation ROM and the weight distribution of both feet. Such result suggests that careful evaluation by separating each element is needed in treating patients with low back pain. Future research should take into account asymmetric alignment and abnormal movement in different joints of the body as well as asymmetry in the bilateral hip joint rotation and the unilateral weight supporting posture.

Effects of Prolonged Running-Induced Fatigue on the Periodicity of Shank-Foot Segment Coupling and Free Torque

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2016
  • Objective: The purpose of this study was to determine the periodicity of shank-foot segment coupling and free torque before and after fatigue induced by prolonged running. Method: Fifteen young healthy male participants with a rear-foot strike ran on instrumented dual-belt treadmills at 70% of their maximum oxygen uptake for 65 min. Kinematic and ground reaction force data were collected for 20 continuous strides at 5 and 65 min (considered the fatigued condition). The approximate entropy tool was applied to assess the periodicity of the shank internal-external rotation, foot inversion-eversion, shank-foot segment coupling, and free torque for the two running conditions. Results: The periodicity of all studied parameters, except foot inversion-eversion, decreased after 65 min of running (fatigued condition) for 80% of the participants in this study. Furthermore, 60% of the participants showed similarities in the change of periodicity pattern in shank internal-external rotation, coupling, and free torque. Conclusion: The findings indicated that the foot inversion-eversion motion may pose a higher risk of injury than the shank internal-external rotation, coupling, and free torque in the fatigued condition during prolonged running.

A Study on Dynamic Response Optimization of a Tracked Vehicle (궤도차량의 동적반응 최적설계에 관한 연구)

  • Kim, Y.H.;Kim, M.S.;Choi, D.H.;U, H.H.;Kim, J.S.;Kim, J.H.;Suh, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.16-29
    • /
    • 1995
  • In this study a tracked vehicle is idealized as a 2-dimensional 9-degrees-of-freedom model which takes into account the effects of HSU units, torsion bars, and track. For the model equations of motion are derived using Kane's method. By using the equations of motion, a numerical example is solved and results are compared to those obtained by using a general purpose multi body dynamic analysis program. The comparison study shows the reasonable coherence between the two results. which confirms the effectiveness of the model. With the model, dynamic response optimization is carried out. The objective function is the peak value of the vertical acceleration of the vehicle at the driver's seat, and the constraints are the wheel travel limits, the ground clearance. and the limits of other design variables. Three different sets of design variables are chosen and used for the optimization. The results show the attenuation of the acceleration peak value. Thus the procedure presented in this study can be utilized for the design improvement of the real system.

  • PDF

A Study on Dynamic Walking Control of Biped Robot (이족 보행로봇의 동적 보행 제어에 관한 연구)

  • Shim, Byoung-Kyun;Jeong, Yang-Keun;Shim, Hyun-Seok;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.245-254
    • /
    • 2014
  • In this paper, stable and robust dynamic walking for a biped motion is proposed. To success this objective, the following structures are processed. In this paper, the proposed control method is one that adjusts actual zero moment position to move to the closest possible point in the stable area instead of following desired zero moment position. This minimizes energy consumption with the smallest joint movements. The proposed control method makes mechanical energy that drives lower limb of the bipedal robot efficient. In this paper, walking experiment is carried out with the three control structures mentioned above. The trajectory generated by off-line is illustrated by performing to walking on flat ground. experiment with an obstacle whose height is lower than that of trajectory is executed to validate dynamic motion.

Kinematic Analysis of the Putter Head and Body Alignments during Short and Long Putts (숏 퍼팅과 롱 퍼팅 시 퍼터헤드와 신체 정열의 운동학적 분석)

  • Park, Tae-Jin;Youm, Chang-Hong;Park, Young-Hoon;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • The purpose of this study was to kinematically analyze the differences between short(2.17 m) and long(10.94 m) putting stroke motions. Thirteen male professional golfers were participated in this study. Experiment was conducted on the artificial grass mat in the gymnasium. Kinematic data were collected by the 60 Hz Kwon3D motion analysis system. Differences were compared by SPSS paired t-test and one-way ANOVA. Duncan was used for post-hoc test and a=.05. The results were as follows: 1. Ground projected trajectory of the putter head were statistically straight during both short and long putts. 2. There was no consistent alignment tendency among shoulder, hip, and stance alignments. However stance alignment was consistent between short and long putts. Thus it is assumed that professional golfers align their body based on their stance alignment. 3. During putting, shoulder rotated not only up and down but also right and left. 4. Left and right elbow distance was maintained during all phases of the putts for both short and long putts. 5. Inter foot distance of long putting was longer than that of short putting.

Biomechanical Analysis of Throw Movement to Second Base in High School Elite Baseball Catchers (고등학교 야구 포수의 2루 송구 동작에 대한 운동역학적 분석)

  • Kim, Sung Yong;Park, Jong Chul;Byun, Kyung Seok;Baek, Hee Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Objective: The purpose of this study was to provide quantitative and objective data of throwing movement in baseball catcher through biomechanical analysis. Method: Eight high school baseball catchers (age: 17.3±0.7 yrs, height: 175.3±4.5 cm, weight: 82.5±9.0 kg, Career: 7.4±2.1 yrs) participated and 3-dimentional motion capture system and electromyography (EMG) were used in this study. Results: The maximum center of mass position displacement was observed in forward direction. The linear velocity magnitude of the upper extremity segments were showed as "wrist>elbow>shoulder" which is indicative of kinematic chain. For kinetic EMG data, we also observed the greater muscle activation in the left brachioradial and erector spine muscles muscle that during throwing movement. Conclusion: We expect that biomechanical data from this study will provide important training implications to baseball coaches and trainers in order to effectively train their baseball catchers.

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.

Seismic Response Control of Dome Structure Subjected to Multi-Support Earthquake Excitation (다중지점 지진하중을 받는 돔 구조물의 지진응답 제어)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.

Optimal Command Input for Suppressing the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion and Its Comparison with the Input Shaping Method (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감을 위한 최적 명령 입력 및 입력 다듬기 방법과의 비교)

  • Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.589-594
    • /
    • 2007
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a singledegree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the Shock Response Spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

  • PDF