• Title/Summary/Keyword: Korean granite

Search Result 1,563, Processing Time 0.027 seconds

A Study on the Growth Environment and Tissue Culture of Gyrophora esculanta MIYOSHI in Korea (한국산(韓國産) 석이(石耳)의 생육환경(生育環境)과 조직배양(組織培養)에 관(關)한 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.333-344
    • /
    • 1989
  • The objectives of this study were to investigate the growth of Gyrophora esculanta and to establish a method of tissue culture of the plant. The results obtained were as follows : 1. The Gyrophora esculanta was found growing mostly on the rock slopes of 722 m to 1915 min elevation on mountains in Korea. 2. Trees growing in the vicinity of the G. esculanta were mainly Quercus spp., Pinus thunbergii, Acer spp. and Lespedeza spp, Especially Quercus spp. was found growing in all of the study site. 3. The average Length of the rock slopes with G. esculanta growing on was 14 m and their aspects were mostly south. 4. The G. esculanta were found growing on rocks of Crystalline Schist, Quartz, Liparite, Granite, ete. Particularly they were mostly found on granites. The gradient of the rock slopes was in the range of 22-90 degrees. 5. The mean number of individuals of G. esculanta per one rock slope ranged from 14 at Mt. Bukhan to 70 at Mt. Jrri. Their mean diameter ranged from 1.8cm at Mt. Munsu to 4.6cm at Mt, Sokri. 6. The average percentage of G. esculanta with fruit body was 17.6%. The highest value was found at Mt. Cheonhwang (24.0%). 7. When the 100 segments of rhizoid of Gyrophora esculanta cultured in Detmer's medium supplemented with kinetine 5mg/l and 2, 4-D 3mg/l, n callus of microspore origins were induced from about 20% of the segments. As the induced n callus was transplanted on the six different types of rocks, it was observed that the juvenile G. esculanta grew best on granite and the development rate of G. esculanta on the granite was about 55%.

  • PDF

Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea (자기지전류법을 이용한 석모도에서의 지열자원 탐사)

  • Lee, Tae-Jong;Han, Nu-Ree;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • A magnetotelluric (MT) survey has been performed to delineate deeply extended fracture systems at the geothermal field in Seokmo Island, Korea. To assist interpretation of the MT data, geological surveying and well logging of existing wells were also performed. The surface geology of the island shows Cretaceous and Jurassic granite in the north and Precambrian schist in the south. The geothermal regime has been found along the boundary between the schist and Cretaceous granite. Because of the deep circulation along the fracture system, geothermal gradient of the target area exceeds $45^{\circ}C/km$, which is much higher than the average geothermal gradient in Korea. 2D and 3D inversions of MT data clearly showed a very conductive anomaly, which is interpreted as a fracture system bearing saline water that extends at least down to 1.5 km depth and is inclined eastwards. After drilling down to the depth of 1280 m, more than 4000 tons/day of geothermal water overflowed with temperature higher than $70^{\circ}C$. This water showed very similar chemical composition and temperature to those from another existing well, so that they can be considered to have the same origin; i.e. from the same fracture system. A new geothermal project for combined heat and power generation was launched in 2009 in Seokmo Island, based on the survey. Additional geophysical investigations including MT surveys to cover a wider area, seismic reflection surveys, borehole surveys, and well logging of more than 20 existing boreholes will be conducted.

Preliminary Experimental Result for Clarifying Sr Isotope Behaviour of Water due to Water-Rock Interaction (물-암석반응에 따른 물에서의 Sr동위원소의 거동에 대한 예비실험결과)

  • Lee, Seung-Gu;Kim, Jeong-Chan
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.211-222
    • /
    • 2010
  • A batch experiment was carried out to investigate a variation of Sr concentration and $^{87}Sr/^{86}Sr$ ratio in the solution by water-rock interaction. The experiments were conducted at room temperature using two kinds of granites (biotite granite and garnet-bearing granite), de-ionized water. surface water. Water/rock ratio was 1:1. For comparison, we also performed another experiment under water/rock condition of 10:1. Then, the concentration of the cations and anions in the solutions showed severe variation during water/rock interaction. However, after sometime, the $^{87}Sr/^{86}Sr$ ratio of the solution moved to the $^{87}Sr/^{86}Sr$ ratio of the rocks and showed relatively constant value. This suggests that the $^{87}Sr/^{86}Sr$ ratio between water and rock becomes to be stable faster than the elemental equilibration of the element in the solution, and is not affected by interaction condition. Therefore, $^{87}Sr/^{86}Sr$ ratio of the groundwater may be useful in calculating the mixing ratio between different aquifer.

Quantitative Damage Assessment in KURT Granite by Acoustic Emission (미소파괴음을 이용한 KURT 화강암의 손상에 관한 정량적 평가)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Hey-Joo;Lee, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.305-314
    • /
    • 2012
  • This paper presents the quantitative damage assessment of granite taken from KAERI Underground Research Tunnel using acoustic emission (AE). The results determined showed the crack initiation and crack damage stress occurred at 48%, 72% of uniaxial compressive strength (UCS) and until the applied stress level was reached the crack damage stress, the damage degree was 0.06. When the applied stress exceeded 80%, 90% of UCS, the damage degree were 0.34, 0.06 and which were similar to those obtained from axial deformation modulus. The simply regression analysis was used to interpret the relationship of the two damage assessment techniques and the two were highly correlated ($R^2$=0.90). Therefore, damage degree based on the AE energy and mohr-coulomb failure criterion were adopted to predict the mechanical properties. As results, the axial deformation modulus, rock strength, internal friction angle, and cohesion of KURT rock were reduced 6%, 12%, 7%, and 3% until the applied stress was 70% of UCS. But when the applied stress reached 90% of UCS, the results were more reduced 69%, 72%, 62%, and 24%, respectively.

Mineralogical and Geochemical Properties and Origin of Clay-silt Sediments, Suwon, Korea (경기도 수원시에서 산출되는 적갈색 점토-실트 퇴적물의 광물 및 지화학 특성과 기원)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.153-163
    • /
    • 2020
  • Mineral and geochemical analysis were conducted on two sections (~3.5 m) of red-brown claysilt sediments covering the gneiss and granite weathering zones in Suwon-si for establishing Quaternary paleoenvironmental changes in Korea. The sections were divided into four sedimentary layers (Unit 1-4) by vertical changes in mineral composition and chemical composition. The lowermost unit 1 was a sandy sediment with a high K-feldspar content with a significant contribution of weathered bedrock. Unit 2 was a transition layer showing intermediate characteristics. Unit 3 was a reddish brown clay-silt sediment, with a total clay content of 58% on average, and the main clay minerals were illite-smectite mixed layer minerals and hydroxy-interlayered vermiculite/smectite. Unit 3 contained almost no plagioclase, while the content of kaolin minerals derived by the plagioclase weathering was higher than in the other layers. Unit 4 had similar mineral composition and chemical properties to Unit 3, but had a higher content of plagioclase and chlorite and lower content of kaolin minerals. The chemical compositions of the sections were compared with those in other regions of Korea, suggesting the eolian origin of Units 3 and 4. The paleoenvironmental change in the sedimentary section of this region was interpreted as follows. Weathered products of gneiss and granite, which are bedrocks of this region, were eroded and deposited as sandy sediments in the periphery to form the lower layers (Unit 1, 2), followed by the deposition of the claysilty rich eolian sediments (Unit 3) during the glacial. Unit 3 was chemically weathered during the warm humid climate during the last interglacial, developing a reddish brown color. After that, a eolian sediment layer (Unit 4) was deposited during the last glacial.

A Study on the Settlement Characteristics of Fill Dam (FILL DAM의 침하특성(沈下特性)에 관(關)한 연구(硏究))

  • Moon, Tae Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.282-291
    • /
    • 1985
  • In order to investigate the settlement characteristics of fill dam with decomposed granite is used as a embankment material instead of conventional clay collected behavoir of Andong dam and analyzed. Andong dam is the use of decomposed granite in the embankment material, and various type of gauges were installed in dam to measure a pore pressure, interval vertical settlement, dam crest settlement, relative settlement, surface settlement and internal horizontal movement. The results were summerized as follows; 1. With the increase of embankment loading, the settlement of core zone during construction increased with linear and under the effective stress $7kg/cm^2$ vertical settlement ratio ranged between 0.1 and 0.8% approximately and showed smaller value than that of fill dam with clay were used as a embankment material. 2. Though embankment loading was increased with about over central part of embankment height, the settlement of core zone in the lower part of the embankment was influenced slightly. 3. Pore pressure responsed sensitively with the increase of coefficient of permeability in core zone and settlement increased with pore pressure were dispersed. 4. During construction relative settlement in the lower part of the embankment has the largest influence on magnitude of the relative density and after construction settlement showed larger value in the core zone which has the largest compression height. 5. Settlement distribution of dam crest showed larger value in the central part, maximum section of dam, but smaller value in near the abutment.

  • PDF

Structural Stability, Weathering and Conservation Method of Granite Standing Sculptured Buddha at Hwangsang-dong, Kumi (구미 황상동 마애여래입상의 구조적 안정성, 풍화 및 보존방안)

  • Lee, Chan Hee;Choi, Suck Won;Suh, Mancheol;Chae, Sang Jeong
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2000
  • Rock composition of the Hwangsang-dong Granite Standing Sculptured Buddha (Treasure No. 1122) in the Kumi City is biotite-hornblende granodiorite which consists of about 30 pieces of individual rock blocks of same compositions. However, the cap rocks is pebble-bearing coarse sandstone. Rock blocks of the Standing Buddha and surrounding out crops occur well developed several joint systems of $N25^{\circ}$ to $45^{\circ}W$ strike and nearly vertical (70 to $85^{\circ}SE$) dipping. Rock blocks of the Standing Buddha showed vertical, horizontal and oblique joints, and those blocks are well supported by individual blocks. However, the junction part of the blocks are under dangerous situation due 10 seriously mechanical and chemical weathering. Host rock of the Standing Buddha belongs to the HW grade, therefore mostly rock-forming minerals of the granodiorite Standing Buddha altered with clay and iron hydroxide minerals by mineralogical and chemical weathering. Near surface of the Standing Buddha show spore and mycelium of green algaes, and a joint plane alive with weeds. We suggest that if structural stability for the Standing Buddha remove essentially a unstable rock blocks from the main body, and the main body necessitate supporting by rock bolting method because of repeated unstability and minimizing stress to the rock blocks. For the opened joint planes, fractured surface and alive weeds will attempt to fill in a petro-epoxy, petro-filler and biochemical treatments for the algaes, and ground water curtain and wall seems to be necessary for water flow and diminishing humidity of the Standing Buddha.

  • PDF

Estimation of Deterioration Depth of Rock Slope due to Freezing-thawing (동결융해에 의한 암반사면의 열화심도 산정)

  • Baek Yong;Seo Yong-Seok;Jeong Ja-Hyea;Kwon O-Ii
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.325-335
    • /
    • 2005
  • Deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was carried out using temperature distribution data for last two years of the five major cities such as Seoul, Daejeon, Pohang, Gwangju and Cangneung. The analysis was performed based on three different types of rocks, sandstone, granite and gneiss. This study has found that the deterioration depths tend to be greater with the increase of the thermal conductivity coefficient in Seoul, Daejeon and Pohang where showing relatively greater temperature deviations. Regarding the influence of rock types, deterioration depths turned out to be greater in Gwangju and Gangneung where show relatively smaller temperature deviations among the five cities, assuming these cities are on the granite with thermal conductivity of $55,200\;cal/m\timesday\times^{\circ}C$. In contrast, for the other rock types, cities of relatively geater temperature deviations show deeper deterioration depth than the others. Deterioration depths of rock slope in Korea due to freezing-thawing fumed out to be around 8.4 m to 10.7 m.

Groundwater Conditions reiated with the Geologic Structures of Bedrocks in the Gyuk-Po Area. (격포 기반암의 지질구조와 지하수 상태)

  • 박동극
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.115-124
    • /
    • 1993
  • Hydrogeological survey related to groundwater condifiors was performed at the study area in Gyukpo, BuanGun, ChunlabukDo to express the relationships between groundwater conditions and the geologic structures such as joints, faults and beddings in bedrock About 200 joints and sjgnfficant faults were measured in this area. Typically, The fracture analysis on cores of 7 boreholes was tried to quantify fracture numerically. Groundwater level was periodically measured for three months. The packer tests of about 175 were carried out in 7 boreholes. As the result, Fractures are locaHy developed as ground water bearing zone and an average hydraulic conductivity of bedrock is $1{\times}10^{-5}cm/sec$ in this area the hydraulic conductivity of this area is correlated with fracture frequency value of F15 and is also well correlated with fracture developed and depth. In accordance with depth, fracture frequency and hydraulic conductivity are decreased. Hydraulic conductivity of granite along depth shows an obiouse change in values but that of sedimentary rocks do not shows changeless. Groundwater movement in the bedrocks of the study area affected not by joints but faults developed in the different rock boundary. In the northern part of this area, The differences of hydraulic conductivity between granite and sedimentary rocks give rise abrsspt at difference in groundwater leveL In the southern part of the study area, there is no different in groundwater level of both same rock types.

  • PDF

Geology and Fracture Distribution in the Vicinities of the Cheonseong and Jeongjok Mountains (천성산과 정족산 일원의 지질과 단열 분포)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Ryoo, Chung-Ryul;Ock, Soo-Seok;Hamm, Se-Yeong;Kim, In-Soo
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.107-127
    • /
    • 2003
  • After detailed geological mapping, structural and fracture-density data were collected and analyzed in the vicinity of Cheonseong and Jeongjok Mts., Gyeongsangnam-do. A extensive dextral strike-slip fault (Beopgi Fault) Parallel to Yangsan and Dongrae Faults, a dextral-transtensional-NW fault, and a few intermittent faults have been found in the study area. Based on strike and frequency, fracture system has been divided into three sets such as NNE-trending J1 ($NS-40^{\circ}E$), WNW-trending J2 ($N50^{\circ}-80^{\circ}W$), and ENE-trending J3 ($N60^{\circ}-90^{\circ}E$). According to analysis of fracture density, it is revealed as follows: (a) Jl is the combination of Y-, P-, and R-shear fractures due to the dextral strike-slip of the Beopgi Fault. (b) J2 is the preexisted fracture zone conducting the intrusion of granite. Two tensional fractures dipping to NNE and SSW respectively have been induced by intrusion of granite and followed crustal uplift. (c) J3 is the tensional fracture developed between Yangsan and Dongrae Faults having NNE trend and dextral strike-slip sense. This study aims to reduce environmental impact and insure stability of underground facilities and tunnels.