• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.025 seconds

Characteristics of Stone-monuments and Geological Studies on the Rocks for Conservation(III) - Hanam city, Yangpyeong-gun and Yeoju-gun, Gyeonggi-do - (석조문화재의 특징과 암석에 대한 지질학적 연구 (III) -경기도 하남시, 양평군 및 여주군을 중심으로-)

  • Lee, Sang Hun;Park, Kyung Rip
    • Journal of Conservation Science
    • /
    • v.4 no.1 s.4
    • /
    • pp.11-42
    • /
    • 1995
  • Stone-monuments, distributed in this area, have been investigated and studied on the characteristics and the rock phases in the geological and conservational points of view. Most of them may have been built from the end of the Shilla Kingdom to the Koryeo Kingdom, which are based on the typical characteristics of the form. The used rocks in these monuments are mainly biotite granite of the Jurassic age which is widely distributed around the area. Black slate and marbles are also used in some monuments, which may be obtained from other areas. The biotite granite of massive and coarse texture contains often inclusions of biotite aggregates or fragments of dioritic rock phase. However, the biotite granite in the area may be very weak to the chemical weathering so that irregular rock surface shows generally $2\~3mm$ relief. The irregular relief is mainly due to different relative degree on the chemical weathering according to the kind of minerals especially quartz, feldspar and biotite. The chemical weathering is also influenced by organisms. For conservation, they must be scientifically considered based on the characteristics, kind of the rock phase, factors on the weathering process, situation in situ or being transported, and protection.

  • PDF

Studies on the Sorption Characteristics of $^{137}Cs$ onto Granite and Tuff ($^{137}Cs$의 화강암 및 응회암에 대한 흡착특성에 관한 연구)

  • Cho, Young-Hwan;Hahn, Pil-Soo;Park, Sang-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Batch sorption experiments were conducted to investigate the sorption characteristics of $^{137}$ Cs, known for the primary target of safety assessment in low-level radwaste disposal, onto domestic rocks such as Granite and Tuff. A response surface analysis method was applied to quantify the effect of 3 independent variables ([Cs], [Vol/Wt], [pH]) on the sorption. Ac a result, initial Cs concentration appeared to be the most important variable within the range of the study. A significant effect of [Vol/Wt] on Kd was observed. The sorption of Cs was pH-insignificant. The sorption extent of nuclides onto tuff was more significant than that onto granite. The pH-insignificant sorption behavior of Cs was discussed in terms of the surface electrical properties and the solution chemistry. The sorption tendency of nuclides onto geomedia studied was interpreted by adopting the water structure modification theory.

  • PDF

Variation of Chemical Composition and Relative migration of major Elements in the Weathering of Jeon-Ju granite and Rang-San granite (전북(全北) 전주지역(全州地域) 화강암(花崗岩) 및 낭산지역(郎山地域) 화강암(花崗岩)의 풍화(風化)에 따른 화학조성(化學組成)의 변화(變化)와 주요원소(主要元素)의 상대적이동(相對的移動))

  • Nam, Ki Sang
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.211-221
    • /
    • 1975
  • Weathering of granites has a geochemical role of great significance, because of their abundance and because of chemical instability near the surface of the earth, which is more pronounced than in most other rocks. On the other hand the granites are tectonically fragile and "react" to deformation with marked facility, giving rise to a whole gamut of deformed rocks. Therefore, the writer has studied on the weathering of granitic rocks at of Iri city and Jeonju city Jeollabukdo, Korea, The fresh and weathered rocks were used as material for the investigation. The results obtained by chemical analysis and observation are as follows. 1) The order of mobility in major elements was Ca, Na and K$H_2O$ was observed clearly and late stages of weathering processes. 3) The early stage of weathering is commenced by physical weathering and followed by chemical weathering. 4) The ratio of FeO/. $Fe_2O_3$, FeO/MgO, and $SiO_2/Al_2O_3 $ decreased uniformly from early to late stage of weathering processes. 5) It was proved that weathering potential of granite was larger than that of basaltic rocks.

  • PDF

Petrochemical and Fluid Inclusion Study on the Porphyritic Granite in the Yonghwa-Seolcheon Area (용화(龍化)-설천(雪川) 지역(地域)에 분포하는 백악기 반상화강암(斑狀花崗岩)의 암석화학(岩石化學) 및 유체포유물(流體包有物)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.445-454
    • /
    • 1995
  • The petrochemical data of the porphyritic granites of Cretaceous age in the Yonghwa-Seolcheon area show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. This granite is the relevant igneous rock of gold-silver mineralization in this mining district Fluid inclusions have been studied in phenocryst quartz from the Cretaceous porphyritic granite. Three main types of fluid inclusion were found : liquid-rich inclusion(I type), gas-rich inclusion(II type) and solid-bearing inclusions(III-A, III-B). The solid-bearing inclusions(III-A,B) represent the earliest trapped fluids. They have salinities between 41.0 and 67.5 wt% equivalent to NaCl. These are high saline inclusions containing NaCl and KCl daughter crystals. Homogenization temperature inferred from the fluid inclusion study ranges from 650 to $75^{\circ}C$ Type I and II inclusions were observed within the same fracture. This cause for these differences in degree of filling is evidence of boiling. Salinities of type I and II inclusions range from 9.87 wt% to 15.29 wt%, from 8.40 wt% to 14.64 wt% NaCl equivalent, respectively.

  • PDF

Creep Characteristics of Granite in Gagok Mine (가곡광산 화강암의 크리프 특성)

  • Yoon, Yong-Kyun;Kim, Byung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.390-398
    • /
    • 2010
  • The time-dependent behaviour of rock is very important characteristics which can be utilized as basic input data for underground mine design or in predicting a long-term stability of underground rock mass structures. In this study, creep tests under uniaxial compression were carried out for the granite specimens sampled in Gagok Mine. Burgers model, Griggs and Singh creep laws were used to simulate the measured creep strain. Through comparing the measured creep behaviour with the approximated creep behaviors from Burgers model, Griggs and Singh creep laws, it is shown that Griggs creep law results in the best approximation of granite in Gagok Mine.

The Relation between Sandy Shore Distribution and Basic Rock in the East Coast of the Korean Peninsula (한반도 동해안의 모래해안 발달과 암석 분포 사이의 상관성)

  • Kim, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • The distribution and size of sandy beaches along eastern Korea has a close relationship with the presence of granite rocks. In general, elongated and wide beaches with abundant sands are likely to develop along the coasts where granitic basic rocks comprise the dominant geology or where a large amount of sands are supplied by streams from inland granitic rocks. Small sandy beaches, in contrast, appear in non-granitic rocks (i.e., under sedimentary and/or metamorphic geology). Hence, large beaches are observed continuously along the shore of Gangwon-do, of which coasts consist predominantly of granitic geology. Such continuity declines from Samcheok city to Pohang city. The rock of Gyeonbuk-do is commonly known as sedimentary, deposited between the late Triassic and the early Tertiary Periods. Because few sands are supplied from the upstream areas, sandy beaches unlikely develop along the coasts of the province, only showing a sporadic, discontinuous distribution under Bulguksa granite, granitic gneiss, and some volcanic rocks. Erosion was rarely observed in the beaches where granitic rocks are distributed, whereas merely five beaches seemed to have undergone some level of erosion in non-granitic regions. This is presumably because a larger amount of sands than that which had been eroded away was replenished in areas under granitic geology, while under non-granitic geology having a deficit in sands, no large sandy beaches had formed at first.

Deep Hydrochemical Investigations Using a Borehole Drilled in Granite in Wonju, South Korea

  • Kim, Eungyeong;Cho, Su Bin;Kihm, You Hong;Hyun, Sung Pil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.517-532
    • /
    • 2021
  • Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

Development and Application of Geological Field Study Sites in the Area of Igneous Rocks (화성암 지역의 야외지질학습장 개발 및 적용)

  • Kim, Hwa Sung;Ham, Ho Shik;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.274-285
    • /
    • 2013
  • The purpose of this study was to develop geological field study sites for learning topography and geology of the area with igneous rocks, specifically in Duibaejae volcanic edifice and Seonang-bawi that were distributed in Goseong-gun, Gangwon-do area. As a follow up, we conducted a study to examine the effect of the study sites when applied to high school freshmen Earth science course. The study proceeded based on the Orion's model in the order of preparatory unit, field trip, and summary unit. The geological field study sites were developed based on the geological study elements presented in the Korean Earth science curriculum. Before the field trip, students simply memorized factual knowledge on minerals, rocks and etc., and showed very low level of understanding on the formation process of the region that was distributed with granite and basalt. Especially, their understanding showed that granite and basalt were formed from the same magma at the same time. After the field trip, they increased in-depth level of understanding about minerals, rocks, and geological structures, but were not able to explain the topographical characteristics of the two rocks because they did not recognize the times of the creation of granite and basalt. The reason is that they have learned the simple concept of the process of forming granite and basalt in their middle school, but that they have not learned the meaning of the difference between two the geological eras when each of the two rocks, granite and basalt, were formed.