• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.03 seconds

The Formation of the Cenozoic Volcanic Edifice in the Goseong-Ganseong Area, Gangwondo, Korea (강원도 고성-간성일대의 신생대 화산체의 형성과정)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.627-636
    • /
    • 2012
  • In the Obongri-Goseong area of Gangwondo, South Korea, there are six densely distributed volcanic edifices i.e., Duibaejae, Oeumsan, Galmibong, 249 m height, 166 m height, and 102 m height, and two other volcanic edifices including Goseongsan and Unbongsan volcanic edifice that are separately located from a distance. A previously undiscovered 249m volcanic edifice in Obongri was found in this investigation, and the six volcanic edifices distributed in Obongri will be referred to as the Obongri volcanic edifice group. Volcanic edifices in this area were interpreted by other researchers as being volcanic plug, plug dome, and cylindrical volcanic pipe type edifices. The aim of this study is to investigate the aspect of volcanic activity in the Obongri-Goseong area and the formation of volcanic edifices by examining of the shape of volcanic edifices, stratigraphy, and characterization of volcanic products. All the volcanic edifices in the area are composed of basaltic rocks on the Mesozoic granite basement, and the prevalence of the dome shape increased towards the upper part of the mountain. Three volcanic edifices (Duibaejae, 166 m height, 102 m height) include intercalated pyroclastic deposits between the basaltic rocks and the basement. The pyroclastic deposit in the Duibaejae volcanic edifice is composed of quartz, feldspar, granite fragments originated from the basement, and scoria fragments originated from the volcanic eruption. In addition to angular olivine, plagioclase, and pyroxene xenocrysts, all the basaltic rocks contained mantle xenolith, gabbroic xenolith originated from the lower crust, and granitic xenolith originated from the basement. This fact indicates that magma rapidly rose to the surface and that the volcanic activity was explosive. It is also interpreted that, as the basaltic magma became highly viscous due to the large amount of xenocrysts, the erupted magma formed a dome structure on the surface. The original dome structure was then severely eroded out leaving a plug dome formation on the basement.

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Determination of Pedo-Transfer Function Using the Relation Between Soil Particle Distribution, Organic Matter and Water Movement in Soil Originated from Limestone (석회암 유래 토양에서의 물의 이동특성과 토양 입자 및 유기물과의 관계에 따른 Pedo-Transfer Function의 결정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for making PTF(Pedo-Transfer Function) for Kfs(field saturaton hydraulic conductivity) estimation, and for investigating the relation between soil particle distribution and the infiltration and percolation rate in soils originated from limestone. Soils used for the experiment were 6 soils of Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate for the soil were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. The particle size distribution and organic matter content of the soils were analyzed. Kfs was not related with sand, silt, clay, and organic mattrer (OM) content because of forest soils which contained high gravel, pebble, and cobble content, and O layer with high OM content. After Mosan soil series and O layer of Gwarim series were excluded for the data analysis, Kfs was explained as a linear function with sand and clay content and a exponential function with OM content. As a result, the PTF equation was obtained as Kfs=-4.20558+0.479706*(S)+0.023187*exp(1.829*OM) ($R^2=0.6558^{*}$).

Paleozoic Strata in the Lankawi Geopark, Malaysia: Correlation with Paleozoic Strata in the Korean Peninsula (말레이시아 랑카위 지질공원의 고생대 퇴적층: 한반도 고생대 퇴적층과의 대비)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.417-427
    • /
    • 2010
  • The Lankawi archipelago is located in 30 km western offshore near the Thailand-Malaysia border in west coast of the Malay Peninsula and consists of 99 (+5) tropical islands, covering an area of about $479km^2$. Together with biodiversity in flora and fauna, the Lankawi archipelago displays also geodiversity that includes rock diversity, landform diversity, and fossil diversity. These biodiversity and geodiversity have led to the Lankawi islands as a newly emerging hub for ecotourism in Southeast Asia. As a result, the Lankawi islands have been designated the first Global Geopark in Southeast Asia by UNESCO since July 1st, 2007. The geodiversity of Lankawi Geopark today is a result of a very long depositional history under the various sedimentological regimes and paleoenvironments during the Paleozoic, followed by tectonic and magmatic activities until the early Mesozoic, and finally by surface processes that etched to the present beautiful landscape. Paleozoic strata exposed in the Lankawi Geopark are subdivided into four formations that include the Machinchang (Cambrian), Setul (Ordovician to Early Devonian), Singa (Late Devonian to Carboniferous), and Chuping (Permian) formations in ascending order. These strata are younging to the east, but they are truncated by the Kisap Thrust in the eastern part of the islands. Top-to-the-westward transportation of the Kisap Thrust has brought the older Setul Formation (and possibly Machinchang Formation) from the east to overlay the younger Chuping and Singa formations in the central axis of the Lankawi islands. Triassic Gunung Raya Granite intruded into these sedimentary strata, and turned them partially into various types of contact metamorphic rocks that locally contain tin mineral deposits. Since Triassic, not much geologic records are known for the Lankawi islands. Tropical weathering upon rocks of the Lankawi islands might have taken place since the Early Jurassic and continues until the present. This weathering process played a very important role in producing beautiful landscapes of the Lankawi islands today.

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea (영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성)

  • Wee, Soo-Meen;Park, Jae-Yong
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.427-443
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Effects of Dietary Mineral Extract from Granite on the Performance of Broiler Chickens and Ammonia Production from the Litter (화강암 추출 활성 광물질의 사료 내 첨가가 육계의 생산성과 깔짚 암모니아 발생에 미치는 영향)

  • Cho J. H.;Jung B. Y.;Paik I. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • An experiment was conducted to investigate the effects of mineral extract from granite on the performance, ammonia production from the litter, components of blood, Newcastle Disease (ND) titer and intestinal microflora in broiler chickens. Nine hundred sixty one-day-old broiler chickens (Ross) were assigned to five treatments: C; control, Zeolite; control + zeolite 1$\%$, AM10: control + active mineral water $10\%$ adsorbed zeolite $1\%$, AM20; control + active mineral water $20\%$ adsorbed zeolite $1\%$ and AM30; control + active mineral water $30\%$ adsorbed zeolite $1\%$. Each treatment consisted of four replicates with 48 broiler chicks for feeding trial. In order to test the effect of ND vaccine on the components of blood, ND titer and intestinal microflora, a separate group of 48 broiler chicks were assigned to the same 5 treatment as the feeding trial plus one negative control (No ND vaccine). Weight gain, feed intake, feed conversion and mortality were not significantly affected by dietary treatments but AM30 tended to be higher than other treatments in weight gain and feed intake, especially during later period (4 to 5 weeks of age). Ammonia production from the litter of AM30 treatment was significantly (P<0.01) lower than the control. Components of blood and ND titer in serum of broiler chickens were not significantly affected by treatments but MCHC (mean corpuscular hemoglobin concentration) of blood was significantly lower (P<0.05) in Zeolite treatment compared to others. The colony forming unit (CFU) of Clostridium perfringens in the small intestinal content of all zeolite and AM treated groups was significantly (P<0.01) lower than the control while the CFU of Escherichia coli was not significantly affected. The CFU of Lactobacilli in AM30 treatment was significantly (P<0.05) higher than the control. In conclusion, dietary supplement of active mineral water adsorbed to zeolite at $30\%$ level (AM30) tended to improve growth performance of broiler chickens and significantly reduced ammonia production from the litter. It also significantly increased CFU of intestinal Lactobacilli.

Achievement of Excavation of Gwiam(Turtle Rock) and Nakseojae Restoration in Bogil-do Yun,Seondo Wonlim (보길도 윤선도원림(명승 제34호) 낙서재지역 원형복원과 귀암(龜巖) 발굴의 성과)

  • Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.111-120
    • /
    • 2012
  • This study regards a series of achievement on Wonlim(Garden) Cultural Properties Excavation Project, led by field of landscape architecture. It will mainly describe excavation results of Gwiam(龜巖: Turtle rock) and historical value of it in terms of Nakseojae(樂書齋) restoration in Bogil-do Yun,Seondo Wonlim(Scenic Sites, No.34). Gwiam(Turtle rock) was found 14.6m apart from the north of Nakseojae, and it covered with 10~15m topsoil tilted toward Nakseojae, The size of Gwiam, which was Granite, was 360cm length, 270cm width, 95cm high. The Edge of Gwiam's North west part was of triangular shape forming Turtle head. The back of the Turtle head was form of Tortoise-shell because of wide backboard with both side groove. The southeast part of Gwiam projected was Turtle's tail. This Granite was obvious Turtle shape artificially made, and there are less likely to relocate from place to place. This Turtle-shaped Gwiam is important landmark for Nakseojae, which is one of the four spiritual creatures written in Bogildoji(甫吉島識) and Gosanyugo(孤山遺稿) by Yunwi. According to Bogildoji, it is estimated that Gwiam were on the axis with Soeunbyung(小隱屛), Nakseojae and was buried when Yiguan(Gosan's grandson) reconstructed a building. Also, it was place for enjoying the moon. But, Even after three times excavation in Nakseojae, there was no way to identify further information regarding Gwiam, so it was a matter of mystification. As a result of this study, Gwiam is laid bare to light in at least 260 years, so it is good example for boosting importance of landscape architecture field and restoring Nakseojae. Furthermore, firm base-soil was discovered in 135m high Rock Mass below, so natural ground of Nakseojae can be estimated by this basis. To be conclusion, Preservation Process for Gwiam and Estimation Space through interpretation of four spiritual creatures(四靈) in Gosan's Poetry should be continue.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.