• Title/Summary/Keyword: Korean granite

Search Result 1,562, Processing Time 0.02 seconds

Geochronology and Petrogenetic processes of the so-called Hongjesa granite in the Seogpo-Deogku Area (석포(石浦)-덕구간(德邱間)에 분포(分布)하는 소위(所謂) 홍제사화강암(洪濟寺花崗岩)의 지질연대(地質年代)와 생성과정(生成過程)에 대(對)한 硏究(연구))

  • Kim, Yong Jun;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.16 no.3
    • /
    • pp.163-221
    • /
    • 1983
  • Main aspects of this study are to clarify geochronology and petrogenetic processes of the so-called Hongjesa granite, which is a member of various intrusive rocks exposed in the northeastern part of the Ryongnam Massif, one of the Precambrian basements of South Korea. In this study, the Hongjesa grainte is divided into four rock units based on the geologic age, mineralogical and chemical constituents, and texture: the Precambrian Hongjesa granite gneiss (Hongjesa granite Proper) and leucogranite gneiss, the Paleozoic gnessic two mica granite, and the Jurassic muscovite granite. The Hongjesa granite gneiss is identified by its grayish color, slight foliation, and porphyroblastic texture. The leucogranite gneiss is distinct by its light gray color, sand medium to coarse grained texture. The gneissic two mica granite is distinguished from others by its strong foliation, containing gray-colored feldspar phenocrysts with biotite and muscovite in varying amounts. The muscovite granite occurs as a small stock containing feldspar phenocrysts along margin of the stock. These granitic rocks vary widely in composition, reflecting the facts that they partly include highly metamorphosed xenolith and schlierens as relics of magmatic and anatectic processes. In particular, grayish porphyroblasts of microcline perthite is characteristic of the Hongjesa granite gneiss, whereas epidote and garnet occur in both the Hongjesa granite gneiss and leucogranite gneiss. These minerals are considered to be formed by potassic metasomatism and contamination of highly metamorphosed rocks deeply buried under the level of the Hongjesa granite emplacement. The individual synchronous granitic rocks plotted on Harker diagram show mostly similar trends to the Daly's values. The plots of the Hongjesa granite gneiss and gneissic two mica granite concentrate near the end part of the calc-alkalic rock series on the AMF diagrams, whereas those of the leucogranite gneiss and muscovite granite indicate the trend of the Skaergaard pluton. These granitic rocks plotted on a Q-Ab-Or diagram (petrogeny's residua system) fall well outside the trough of the system. This can be attributed to the potassic matasomatism of these rocks. On the ACF diagram, these rocks appear to be dominantly I-type prevailing over S-type. The K-Ar ages, obtained from a total of 7 samples of the leucogranite gneiss, gneissic two mica granite, muscovite granite, porphyritic alkali granite, and rhyolitic rock, in addition to the Rb/Sr ages of the Hongjesa granite gneiss by previous workers, permit the rock units to be arranged in the following chronological order: The middle Proterozoic Hongjesa granite gneiss (1714-1825 m.y.), the upper proterozoic leucogranite gneiss (875-880 m. y.), the middle Paleozoic gneissic two mica granite (384 m. y.) the upper Jurassic muscovite granite (147 m. y.), the Eocene alkali granite (52 m. y.), and the Eocene rhyolitic rock (45 m. y.). From the facts and data mentioned above, it is concluded that the so-called Hongjesa granite is not a single granitic mass but is further subdivided into the four rock units. The Hongjesa granite gneis, leucogranite gneiss, and gneissic two mica granite are postulated to be either magmatic or parautochtonous, intrusive, and the later muscovite granite is to be magmatic in origion.

  • PDF

Trace Elements and REE Characteristics of the Mesozoic Granites in the Wolchul Mt. Area (월출산 지역에 분포하는 중생대 화강암류에 대한 미량원소와 회토류원소의 특성)

  • Lee, Chang-Shin;Kim, Cheong-Bin
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.293-304
    • /
    • 1996
  • The Wolchul Mt. area is composed of a biotite granite and a pink feldspar granite. These granites are distinctly different in terms of their field occurrence, mineralogy, trace element and REE composition, as well as their isotope ages. The biotite granite has higher ferromagnesian elements and lower lithophile trace element abundances than the pink feldspar granite. The biotite granite has high Sr and Ba while the pink feldspar granite has high Rb. On the Rb-Sr-Ba diagram the biotite granite plots as a granodiorite while the pink feldspar granite belongs to a strongly differentiated granite. The ${\Sigma}$ LREE/ ${\Sigma}$ REE for the biotite granite is 0.95 and for the pink feldspar granite it is 0.88. The ratio shows a steep decrese in LREE while HREE is essentially constant. Based on the Eu/Sm, $[La/Lu]_{cN}$ and low Eu(-), the biotite granite has quartz diorite to granodiorite composition while the pink feldspar granite, with a relatively high Eu(-) anomaly, falls into the monzo- to syenogranite classification. The silica vs. trace element diagrams for the two granites indicate that the biotite granite could have formed near to a continental margin or volcanic island setting environment while the pink feldspar granite formed within a continental plate or as result of plate collision. The biotite granite has a U-Pb zircon age of 175 Ma, i.e. Middle Jurassic. The pink feldspar granite is younger, it has a K-Ar orthoclase age $93.6{\pm}1.5$ Ma which is Late Cretaceous age.

  • PDF

Geochronology and Petrochemistry of Foliated Granites between Damyang and Jinan (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 지질시대(地質時代)와 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Cheong Bin;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.233-244
    • /
    • 1990
  • Plutons of Damyang-Jinan area consist of gray feldspar granite gneiss, biotite granite gneiss, foliated granites, Namweon granites, gabbro, biotite granite and Ogangri granite in term of mineralogical, texture and field evidence. From Isotope data of study area, chronological order of the Plutons are the Pre-cambrian gray feldspar granite gneiss(Ar39-Ar40, hornblende, $1998.4{\pm}8.3Ma$), middle to late Triassic Daegang foliated granite(Rb/Sr, whole rock, $288{\pm}4Ma$), foliated hornblende biotite granodiorite(K/Ar, hornblende, $198.7{\pm}9.9Ma$), Sunchang foliated granodiorite(Rb/Sr, whole rock, $222{\pm}4Ma$), foliated two mica granite, Samori foliated granite and Namweon granite(Rb/Sr, whole rock, $211{\pm}3Ma$: K/Ar, hornblende, $203{\pm}10.2Ma$), middle Jurassic Gabbro(K/Ar, hornblende, $180.7{\pm}9MA$) and biotite granite, and Cretaceous Ogangri granite. According to variations diagrams of $Al_2O_3$ versus normative PI(100 An)/(Ab+An), Daegang foliated granite is plotted on tholeiitic series, and other foliated granites on calc alkaline rock series which are consider to be formed by magmatism at continental margin and island arc region. And alkalinity versus $SiO_2$ shows that Daegang folited granite and Samori foliated granite are correspond to alkaline region, foliated hornblende biotite granodiorite and Sunchang foliated granodiorite to calc alkaline region, and foliated two mica granite to both regions. According to ACF diagrams, Daegang and Samori foliated granites are plotted on S-type. Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite on I-type, and foliated two mica granite on both type. Foliated granites are a series of differentiated products from cogenetic magma, and effected under ductile sheared zone. Characteristic foliation of foliated granites are considered to be generated by dextral strike slip faulting and ductile shearing.

  • PDF

Petrology of Granitic Complex Distributed in the Woosanbong area, northwestern part of Yuseong (유성(儒城) 서북부(西北部) 우산봉(雨傘峰) 일대(一帶)에 분포(分布)하는 화강암(花崗巖) 복합체(複合體)의 암석학적(岩石學的) 연구(硏究))

  • Kim, Seungho;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.123-142
    • /
    • 1981
  • Granitic complex in the Woosanbong area is composed of schistose granite, two-mica granite, biotite granite, porphyritic granite and pink feldspar granite in order of intrusion. In their boundary aspects, the gradational change between porphyritic granite and pink feldspar granite is observed in field relations. All the granites of the complex are classified to quartz monzonite by the modal compositions following Bateman's classification (1961) with the exception of pink feldspar granite which belongs to granite according to the petrographical classification. The first three granites are characterized by highly development of vein and/or lens-like pegmatites in their bodies, and two others contain green hornblende uniquely. These leucocratic two-mica granite shows an unusual character in ratio of muscovite to biotite 1: 0.7 to 1:13, and contains dominantly microcline. The content of muscovite varies in places in the field. Under the polarizing microscope it is revealed that the muscovite flakes occur as the products altered from biotite partly or completely, and it usually associates with chlorite flakes nearby. These features, therefore, suggests that biotite probably has been altered to muscovite and chlorite by hydration during deuteric processes. At the same stage, sericitization of plagioclase by the hydrolytic decomposition, and transformation of orthoclase to microcline may be taken place. Accordingly, it is obviously permissible to consider the two-mica granite as a kind of 'apo-granite' by deuteric alterations during the consolidation of magma.

  • PDF

Petrochemistry of Mesozoic Granites in Wolchulsan Area (월출산지역에 분포하는 중생대 화강암류에 대한 암석화학적 연구)

  • Kim, Cheong-Bin;Yoon, Chung-Han;Kim, Jeong-Taek;Park, Jay-Bong;Kang, Sang-Won;Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.375-385
    • /
    • 1994
  • The studied area is composed of Precambrian gneiss complex, middle Jurassic biotite granite, late Cretaceour sediments, volcanics and pink feldspar granite. Characteristic minerals of the biotite granite is plagioclase and hornblende whereas the pink feldspar granite is pink feldspar (perthite) and quartz. Plagioclase compositions of the biotite granite and the pink feldspar granite are oligoclase to calcic andesine ($An_{18-44}$) and sodic albite ($An_{0.5-5.0}$), respectively. In the variation diagrams of the Harker and normative Q-Or-Pl diagram, the biotite granite belongs to the category from granodiorite to granite, the pink feldspar granite from nomal to late granite. The values of D.I. L.I. and alkalinity of the pink feldspar granite are higher than those of the biotite granite. While CaO is enriched in the biotite granite, $K_2O$ is enriched in the pink feldspar granite. The ratio of $K_2O/Na_2O$ which indicates the relative ratio of alkali is 1.06 in the pink feldspar granite, and 0.86 in the biotite granite. In A-M-F and N-C-K diagrams both these granites are plotted in peraluminus granite ($Al_2O_3$>$Na_2O+K_2O+CaO$) region, assigned to calc alkaline series and alkaline series respectively. Put into the form of A-C-F diagram, the biotite granite falls under I-type, and the pink feldspar granite S-type. On the base of whole rock ratios of $Fe^{+3}/Fe^{+2}+Fe^{+3}$ and $^{87}Sr/^{86}Sr$ for the granites in studied area, the biotite granite indicates ilmenite series (0.26) and S-type and/or contaminated I-type ($0.72020{\pm}0.00050$), the pink feldspar granite magnetite series (0.44) and I-type ($0.70826{\pm}0.00020$).

  • PDF

The granite in Korean peninsula and its Geotechnical characteristics (한반도에 분포하는 화강암과 화강암반의 지질공학적 특성)

  • Lee, Byung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.875-883
    • /
    • 2008
  • The amount of granite distribution area occupies about 40 - 50% of Korean Peninsula. The granite irregularly Intruded through preCambrian to Tertiary times but in Jurassic time so called, Daebo granite most widely crops out in Korean Peninsula. In addition to Bulkuksa Grante which intruded at Cretaceous time crops out at the southern part of Korean Peninsula and in northern part Triassic Songrim Granite is distributed. These granites have equigranular texture and are relatively isotropic. Their uniaxial compressive strength is above $1,500kg/cm^2$ and also seismic velocity is over 2,000m/sec. When these rocks receive a weathering action, the feldspar weathers first and the quartz grains remain plentifully to make the "Masato(Korean name)". Also when the granite receives a weathering action, quite often it make sheeting joint which is topographically parallel to the earth surface and also make a (so called, onion structure. These weathering phenomena easily make a land sliding when it is heavy rain and weathering surface is irregular.

  • PDF

Study on The Contact Metamorphism of Weolagsan Granite (월악산화강암(月岳山花崗岩)의 접촉변성(接觸變成)에 관(關)하여)

  • Lee, Dai Sung;Kang, Jun Nam
    • Economic and Environmental Geology
    • /
    • v.11 no.4
    • /
    • pp.169-182
    • /
    • 1978
  • The Weolagsan area consists of four units; (1) Low grade meta-sediments of the upper members of Ogcheon age unknown group such as Changri (mainly black slate and phyllitic rock), Majeonri (mainly alternation of slate, limestone and chert) and Hwanggangri Formation (pebble bearing phyllitic sediments); (2) Samtaesan Formation of Chosun System of Ordovician; (3) So called meta-volcanics and (4) Weolagsan Granite and its associations which intruded above mentioned meta-sediments and meta-volcanics. This study was focused to know the Woelagsan granite and its metasomatic effects to the country rocks petrographically and petrochemically. According to the field survey, microscopic work and some chemical analysis, the granite is a "normal granite" based on the Streckeisen's classification and belongs to a mass of the Central-zone younger group in Ogcheon geosynclinal belt. The granite metasomatized the country rocks along its northern contact zone. Zone of calcareous and cherty rocks (Majeonri formation) was silicified partly and skarned locally at the contact with the granite. The chemical analysis of the zone show no difinite variations in contents of $SiO_2$ and CaO with the distance from the granite. It seems to be indicated that the silicification of this part was not so metasomatized by the granite body, but thermally affected as much as to be partially remelted in the specific parts of the formations. Meta-volcanic rock zone was slightly chloritized near contact with the granite. Limestone of Samtaesan Formation was silicified and skarned along the contact zone by the granite body. The chemical analysis of the zone show some noticiable changes in compositions of $SiO_2$ and CaO with distance from the granite boundary. It can be imagined that the silicification of this zone was metasomatically originated by Woelagsan Granite. According to chemical analysis on several trace elements, the ratio of Zn/Cr and Ni/Cr are relatively higher than that of Cu/Cr in the above mentioned silicified zones. Generally the variation of these metal elements in the zones tend to be regular with distance from the granite body.

  • PDF

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

Petrochemical Study On the Kwangju Granite Body (광주화강암체에 대한 암석화학적 연구)

  • Kim, Yong-Jun;Oh, Min-Su;Park, Jay-Bong
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.83-96
    • /
    • 1993
  • Kwangju granite body located in vicinity of Kwangju city consist of three rock bodies-Kwangju rock body, Jangsung rock body and Youngkwang rock body. Petrochemistry of Kwangju granite is as follows: Kwangju granite body is igneous complex which compose of a series of differential products of a magma. Kwangju granites are divided into four rock facies based on the geologic age, mineralogical and chemical constituents and texture: Triassic hornblende-biotite granodiorite and biotite granite, and Jurassic porphyritic granite and two mica granite. Harker and other variation diagrams of Kwangju granites plot on trend of calc-alkali rock series and range of peraluminous granite. Parental magma type of Kwangju granites correspond to I-type, Syn-Collision type in compressive stress field by collision movement between both rock block. In chondrite normalized REE patterns of Kwangju grnites, LREE enriched than HREE in REE amount and have more steep negative slope with slightly (-) Eu anormaly.

  • PDF

A Study on the Building Stone Resources in Korea (국내석재자원(國內石材資源)에 관(關)한 연구(硏究))

  • Shin, Byung Woo;Hyun, Jeon Ki
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.263-276
    • /
    • 1985
  • Building stones can be divided into two groups: raw stone and stone product. In Korea, they consist of granite, diorite, gabbro, andesite, tuff, slate and marble, of which granite is main product. The disribution area is approximately $31,753km^2$. The enterprises of building stone are about 1,500 at present. The granites for building stone are biotite granite, hornblende granite. granodiorite and porphyritic granite, of different colors (white, pink, grey, green and black). The compressive strength of granite ranges from 813 to $1,338kg/cm^2$, hardness from 78 to 101 and water absorption ratio from 0.09 to 0.40%. The weight reduction ratio of granite for 14 hours in aqua regia+$KMnO_4$solution is 0.3~4.5wt.%. There are eighty granite quarries in Korea. Marbles can also be extensively used for building but only a few mines are operated at present.

  • PDF