• 제목/요약/키워드: Korean ginseng root

검색결과 1,072건 처리시간 0.028초

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.

인삼근중 생육조절제의 계절변화 (Seasonal Change of Growth Regulator Activity in Panax ginseng Root)

  • Hoon Park;Kab Sig Kim;Chong Hwa Lee
    • Journal of Ginseng Research
    • /
    • 제10권2호
    • /
    • pp.187-192
    • /
    • 1986
  • Activity of endogenous growth regulator in 4th year Panax ginseng root was investigated by second leaf sheath test of rice seedling and paper chromatogram of a acidic fraction of methanol extract before (March 28) and after (May 9) emergence of root bud, at the late season (Sept.4) and after leaf fall (November 11). GA$_3$ and ABA were used as reference. According to paper and high performance liquid chromatography of samples and authentic growth regulators the presence of insole acetic acid (IAA), gibberellic acid (GA$_3$) and abscisic acid (cis and trans ABA) was confirmed. These three regulators appeared to consist of major system though the existence of other regulators could not be ruled out. IAA activity seemed little changed through out the seasons. GA activity decreased in the later stages while ABA activity increased.

  • PDF

양식묘단 토양의 물리성이 묘삼생육 및 수량에 미치는 영향 (Effect of Physical Properties of Soil on Ginseng Seedling Growth in Nursery Bed)

  • 이종철;변정수
    • Journal of Ginseng Research
    • /
    • 제19권3호
    • /
    • pp.287-290
    • /
    • 1995
  • This study was conducted to elucidate the effect of physical properties of soil in nursery bed with different densities on growth of ginseng seedling. Stem length, leaf length and leaf width of ginseng seedling showed the decreasing tendency with increasing the hardness of the nursery soil. Fresh root weight per seedling and number of available seedlings were increased significantly with decrease of the soil hardness. For solid, liquid phases, bulk density and hardness of soil, negative correlations were shown in stem length, leaf length, leaf width, root weight per seeding, and number t of available seedlings. On the other hand, gas phase, air permeability and porosity of soil had positive correlations with stem length, leaf length, leaf width, root weight per seedling and number of available seedlings. Key words Yang-Jik nursery, ginseng seedling, soil physical properties.

  • PDF

Production of Adventitious Ginseng Roots Using Biorectors

  • Yu, Kee-Won;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.309-315
    • /
    • 2000
  • Panax ginseng is an important medicinal plant that has been used worldwide for geriatric, tonic, stomachic, and aphrodisiac treatments. Ginsenosides contained in the ginseng root are the main substances having active functions for human body. The price of ginseng is very expensive due to a complex process of cultivation, and the yield of ginseng is limited, which cannot meet the demand of the increasing market. Researchers have applied plant biotechnology to solve the problems but there are still things to be determined towards ginsenoside production by large-scale adventitious root culture. In this experiment, 5 to 20 liter bioreactors were employed to determine optimal conditions for adventitious root culture and ginsenoside production of Panax gineng. Callus was induced from the ginseng root on MS agar medium containing 1.0 mg. $L^{-1}$ 2,4-D and 0.1 mg. $L^{-1}$ kinetin. Then the callus was cultured on MS agar medium supplemented with 2.0 mg. $L^{-1}$ IBA, 0.1 mg. $L^{-1}$ kinetin, and 30 g. $L^{-1}$ to induce adventitious roots. The maximum root growth and ginsenoside production were obtained in 1/2 MS medium. 2.0 mg. $L^{-1}$ naphthalene acetic acid resulted in greater root growth than 2.0 mg $L^{-1}$ indole-3-butyric acid. Ginsenoside content increased with 2.0 mg. $L^{-1}$ benzyl adenin or kinetin. High concentrations of benzyl adenin (above 3.0 mg. $L^{-1}$ ) decreased the adventitious root growth and ginsenoside productivity. N $H_{4}$$^{+}$ inhibited the ginsenoside accumulation, while high concentrations of $K^{+}$, $Mg_{2}$$^{+}$, and $Ca_{2}$$^{+}$ increased it. N $H_{4}$$^{+}$ at 0.5 and 1.0 times of the normal amount in 3/4 SH medium resulted in the greatest biomass increase, but the highest ginsenoside productivity was obtained when N $O_{3}$$^{-}$ was used as the sole nitrogen source in the medium. Most microelements at high concentrations in the medium inhibited the root growth, but high concentrations of MnS $O_4$enhanced the root growth. Root dry weight increased with increasing sucrose concentrations up to 50 g. $L^{-1}$ , but decreased from 70 g $L^{-1}$ Ginsenoside productivity was maximized at the range of 20 to 30 g. $L^{-1}$ sucrose. In the experiment on bioreactor types, cone and balloon types were determined to be favorable for both adventitious root growth and ginsenoside production. Jasmonic acid was effective for increasing ginsenoside contents and Rb group ginsenosides mainly increased. These results could be employed in commercial scale bioreactor cultures of Panax ginseng.x ginseng.

  • PDF

Agrobacterium rhizogenes에 의한 인삼( Panax ginseng C. A. Meyer )근 조직에서의 Hairy Roots 유도 및 배양 (Induction and Culture of Hairy Roots from Ginseng(Panax ginseng C. A. Meyer) Roots Discs by Agrobacterium rhizogenes)

  • 황백;고경민
    • KSBB Journal
    • /
    • 제4권3호
    • /
    • pp.288-292
    • /
    • 1989
  • 인참 근 조직에 Agrobacterium rhizogenes strain $A_4$를 접종하여 hairy roots 유도와 유도된 hairy roots의 배양 조건을 조사하였다. 48시간 배양된 균($2{\times}A92$bacteria/ml)을 접종하여 암조건($26{pm}1^{\circ}C$)하에서 배양하였을때 6-7주후 tumor가 형성되었으며, 10-12주후 hairy roots가 유도되었다. 근 년별 hairy roots 유도율은 5년근이 4, 6년근에 비하여 높았으며, 배지에 IAA, 2, 4-D, IBA 및 tryptophan 을 각각 첨가시켰을때 15-30mg/l tryptophan에서 tumor 및 hairy roots 유도율이 증가되었음을 나타내었다. 또한 유도된 hairy roots hormone-free인 RCM배지(sucrose 3%, pH 4.5)에서 배양하였다.

  • PDF

인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질 (Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제6권2호
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

녹비작물 토양환원과 태양열 소독에 의한 3년생 인삼의 뿌리썩음병 억제효과 (Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng)

  • 서문원;이성우;이승호;장인복;허혜지
    • 한국약용작물학회지
    • /
    • 제27권4호
    • /
    • pp.284-291
    • /
    • 2019
  • Background: Ginseng root rot disease, caused by Cylindrocarpon destructans and Fusarium solani is a major cause of replant failure in continuous cropping ginseng. Methods and Results: To control replant injury in soil infected with C. destructans and F. solani, biosolarization was performed by covering the plot with transparent polyethylene film after adding green manure of maize and sunflower for the summer season. Per 10 a, fresh and dry weight of maize was 10.1 and 2.5 tons, respectively, and that of sunflower was 8.1 tons and 1.2 tons, respectively. Mean maximum temperature at 20 cm depth was $33.2^{\circ}C$, $41.5^{\circ}C$ and $41.8^{\circ}C$ in the control, maize-incorporated and sunflower-incorporated plots, respectively. The elapsed time over $40^{\circ}C$ was 36.4 h in the maize-incorporated plot and 77.3 h in the sunflower-incorporated plot. Biosolarization increased $NO_3$ content in soil, while content of organic matter, Ca, and Mg was decreased. Electrical conductivity, $NO_3$ and $P_2O_5$ in soil significantly increased after two years of biosolarization. The number of spores of C. destructans in soil was significantly decreased by biosolarization, and sunflower treatment was more effective than maize treatment in decreasing the number of spores. Root yield of 3-year-old ginseng was significantly increased by biosolarization, however, there was no significant difference between maize and sunflower treatments. Rate of root rot in 3-year-old ginseng decreased to 16.5% with the incorporation maize and 5.0% with the incorporation of sunflower, while that in control 25.6%. Conclusions: Biosolarization was effective in inhibiting ginseng root rot by decreasing the density of root rot disease and improving soil chemical properties.

인삼근 적변현상과 근권 토양환경 (Red-Colored Phenomena of Ginseng(Panax ginseng C. A. Meyer) Root and Soil Environment)

  • 양덕조;김용해
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.91-97
    • /
    • 1997
  • In order to elucidate the mechanism of red-colored phenomena(RCP) in ginseng(Panax ginseng C.A. Meyer), distribution of inorganic elements of ginseng root and its surrounding soil, and microflora in the soil were investigated. Red brown colored-substances were accumulated in the cell wall of epidermis at early stage of red-colored ginseng (RCG). Cell wall of the late stage of RCG was disordered and microorganisms were shown in the disordered cell wall. Al, Si and Fe contents among inorpanic elements in the epidermis of RCG were higher at two or three times than that of healthy ginseng. On the other hand, K content was higher at three times in healthy ginseng than that of RCG. Especially, Fe content was higher at three times in lateral roots of RCG than that of healthy ginseng. Total 21 strains of microorganisms were isolated on the 523 medium from surface soil, surrounding soil of both healthy and RCG, and RCG. Six strains of microorganisms among them were resistant to 2 mM Fe. Two species in Bacillus app. and Lactobacillus app. , and one species in Micrococcus sp. and Npisseria sp. respectively were identified. It seemed that RCP was closely related with the distribution and uptake of inorganic elements, was also correlated Fe-independent metabolism of microorganisms.

  • PDF