• Title/Summary/Keyword: Korean dental association

Search Result 9,823, Processing Time 0.033 seconds

Factors influencing the axes of anterior teeth during SWA on masse sliding retraction with orthodontic mini-implant anchorage: a finite element study (교정용 미니 임플랜트 고정원과 SWA on masse sliding retraction 시 전치부 치축 조절 요인에 관한 유한요소해석)

  • Jeong, Hye-Sim;Moon, Yoon-Shik;Cho, Young-Soo;Lim, Seung-Min;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.339-348
    • /
    • 2006
  • Objective: With development of the skeletal anchorage system, orthodontic mini-implant (OMI) assisted on masse sliding retraction has become part of general orthodontic treatment. But compared to the emphasis on successful anchorage preparation, the control of anterior teeth axis has not been emphasized enough. Methods: A 3-D finite element Base model of maxillary dental arch and a Lingual tipping model with lingually inclined anterior teeth were constructed. To evaluate factors influencing the axis of anterior teeth when OMI was used as anchorage, models were simulated with 2 mm or 5 mm retraction hooks and/or by the addition of 4 mm of compensating curve (CC) on the main archwire. The stress distribution on the roots and a 25000 times enlarged axis graph were evaluated. Results: Intrusive component of retraction force directed postero-superiorly from the 2 mm height hook did not reduce the lingual tipping of anterior teeth. When hook height was increased to 5 mm, lateral incisor showed crown-labial and root-lingual torque and uncontrolled tipping of the canine was increased.4 mm of CC added to the main archwire also induced crown-labial and root-lingual torque of the lateral incisor but uncontrolled tipping of the canine was decreased. Lingual tipping model showed very similar results compared with the Base model. Conclusion: The results of this study showed that height of the hook and compensating curve on the main archwire can influence the axis of anterior teeth. These data can be used as guidelines for clinical application.

A THREE-DIMENSIONAL FEM COMPARISON STUDY ABOUT THE FORCE, DISPLACEMENT AND INITIAL STRESS DISTRIBUTION ON THE MAXILLARY FIRST MOLARS BY THE APPLICATION OF VAR10US ASYMMETRIC HEAD-GEAR (비대칭 헤드기어의 적용시 상악제 1 대구치에 나타나는힘과 변위 및 초기 응력분포에 관한 3차원 유한요소법적 연구)

  • Kim, Jong-Soo;Cha, Dyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.25-38
    • /
    • 2001
  • The purpose of this study was to compare the force, the displacement and the stress distribution on the maxillary first molars altered by the application of various asymmetric head-gear. For this study, the finite element models of unilateral Cl II maxillary dental arch was made. Also, the finite element models of asymmetric face-bow was made. Three types of asymmetric face-bow were made : each of the right side 15mm, 25mm and 35mm shorter than the left side. We compared the forces, the displacement and the distribution of stress that were generated by application of various asymmetric head-gear, The results were as follows. 1. The total forces that both maxillary first molars received were similar in all groups. But the forces that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow shortened. 2. In lateral force comparison, the buccal forces that normally positioned tooth received were increased as the length of the outer-bow shortened, and the buccal fortes that mesially positioned tooth received were decreased as the length of the outer-bow shortened. Though the net lateral force moved to the buccal side of normally positioned tooth as the length of the outer-bow shortened, both maxillary first molars received the buccal force. That showed 'Avchiai Expansion Effect' 3. The distal forces, the extrusion forces and the magnitudes of the crown distal tipping that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow was shortened. 4. The magnitude of the distal-in rotation that normally positioned tooth received were increased as the length of the outer-bow was shortened. But, mesially positioned tooth show two different results. For the outer-bow 15mm shortened, mesially positioned tooth showed the distal-in rotation, hut for the outer-bow 25mm and 35mn shortened, mesially positioned tooth showed the distal-out rotation. Thus, the turning point exists between 15mm and 25mm. 5. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the compressive stress in the distobuccal root of the normally positioned tooth moved from the palatal side to the distal side and the buccal side successively as the length of the outer-bow shortened. 6. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the magnitudes of stress were altered but the total stress distributions were not altered in the mesiobuccal root and the palatal root of normally positioned tooth, and also three roots of mesially positioned tooth as the length of the outer-bow shortened.

  • PDF

COMPARATIVE ANALYSIS OF THE RELATIONSHIP BETWEEN BASAL BONE AND TEETH IN NORMAL OCCLUSION AND ANGLE'S CLASS I MALOCCLUSION (정상교합자와 I급 부정교합자에서 치아와 기저골의 관계에 대한 비교 분석)

  • MOON, Hye-Jeong;KYUNG, Hee-Moon;KWON, Oh-Won;KIM, Jung-Min
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.413-426
    • /
    • 1992
  • In order to analyze the relationship between teeth and basal bone for the maintainance of the good occlusion, the mesiodistal width of teeth, the basal arch width and the basal arch length were measured on the study model of the normal occlusion group and Angle's class I malocclusion group (non-extraction group, extraction group) The Maximum tooth material, the percentage of basal arch width to maximum tooth material, the percentage of basal arch length to maximum tooth material and the percentage of basal arch width plus basal arch length to maximum tooth material were caculated, and then statistical analysis was done. From thie study, the obtained results were as follows; 1. In maxilla, the percentage of basal arch width to maximum tooth material was $46.9{\pm}2.6\%$ in normal occlusion group, $49.4{\pm}3.9\%$ in non-extraction group, and $42.5{\pm}3.3\%$ in extraction group. In mandible, that was $46.6{\pm}2.4\%$ in normal occlusion group, $47.5{\pm}4.0\%$ in non-extraction group, and $42.6{\pm}2.6\%$ in extraction group. 2. In maxilla, the percentage of basal arch length to maximum tooth material was $33.4{\pm}1.9\%$ in normal occlusion group, $33.9{\pm}1.8\%$ in non-extraction group, and $28.7{\pm}2.5\%$ in extraction group. In mandible, that was $34.4{\pm}4.3\%$ in normal occlusion group, $36.5{\pm}1.9\%$ in non-extraction group, and $31.5{\pm}2.5\%$ in extraction group. 3. In maxilla, the percentage of basal arch width plus basal arch length to maximum tooth material was $80.3{\pm}3.4\%$ in normal occlusion group, $83.3{\pm}4.8\%$ in non-extraction group, and $71.2{\pm}4.3\%$ in extraction group. In mandible, that was $81.0{\pm}5.2\%$ in normal occlusion group, $84.0{\pm}5.4\%$ in non-extraction group, and $74.1{\pm}4.1\%$ in extraction group. 4. In Maxilla, the $95\%$ confidence interval of the percentage of basal arch width to maximum tooth material was $46.3-47.5\%$ in normal occlusion group, $48.1-50.7\%$ in non-extraction group, and $41.7-47.2\%$ in extraction group. In mandible, that was $46.1-47.2\%$ in normal occlusion group, $46.1-48.8\%$ in non-extraction group, and $42.0-43.3\%$ in extraction group. 5. In maxilla, the $95\%$ confidence interval of the percentage of basal arch length to maximum tooth material was $32.9-33.9\%$ in normal occlusion group, $33.3-34.5\%$ in non-extraction group, and $28.1-29.2\%$ in extraction group. In mandible, that was $33.4-3.4\%$ in noraml occlusion group, $35.8-37.2\%$ in non-extraction group, and $30.9-33.1\%$ in extraction group. 6. In maxilla, the $95\%$ confidence interval of thepercentage of basel arch width plus basal arch length to maximum tooth material was $79.5-81.0\%$ in normal occlusion group, $81.6-84.9\%$ in non-extraction group, and $70.1-72.2\%$ in extraction group. In mandible, that was $79.8-82.2\%$ in normal occlusion group, $82.1-85.5\%$ in non-extraction group, and $73.1-75.1\%$ in extraction group. 7. There was correlation between maxilla and mandible in the maximum tooth material, the basal arch width, the basal arch length, the percentage of basal arch width to maximum tooth material, the percentage of basal arch length to maximum tooth material and the percentage of basal arch width plus basal arch length to maximum tooth material, but not in the basal arch length of male of the extraction group. * A thesis submitted to the Council of the Graduate School of Kyungpook national University in partial fulfillment of the requirements for the degree of Master of Dental Science in December, 1991.

  • PDF