• Title/Summary/Keyword: Korean dam reservoir

Search Result 394, Processing Time 0.021 seconds

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.

Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model (인공 신경망 모형을 활용한 저수지 군의 연계운영 기준 수립)

  • Na, Mi-Suk;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2010
  • In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.

A Study on the Safety Inspection System Improvement of Agricultural Reservoir Considering Fill-Dam Characteristics (필 댐의 특성을 고려한 농업용 저수지 정밀안전진단체계 개선 연구)

  • Lee, Chang Beom;Jung, Nam Su;Park, Seong Ki;Jeon, Sang Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • In 2008, 17, 596 dams and reservoirs are scattered across South Korea, and 17, 505 of them (99.5 %) are used for agriculture and 99.3 % are fill dam types. This study aimed to review literature related to the precise safety diagnosis system for agricultural reservoirs established by Korea Rural Community Corporation (KRCC) and analyze problems of its evaluation method. And then, it proposed ways to improve the system including a modified diagnosis system, which was applied to pilot districts in order to verify the utility. For assessment model development of agricultural reservoir, we reviewed status of precision safety inspections systems of agricultural reservoir. There are many problems such as assess agricultural reservoir not by sheet which used in fill dam but by block which used in concrete dam construction and diversion tunnel which main element in reservoir levee is treated as water intake facility. For considering diversion tunnel in reservoir levee, previous precision safety inspection systems which summed in separated phenomenon, separated element, separated site, separated facility was change to new systems which summed in site, phenomenon, element, and facility. Compared results of previous inspection system calculated total assessment index (Ec) with new system calculated total assessment index (Ec) are not show statistical difference.

Hydrologic Safety Evaluation of Small Scale Reservoir by Simplified Assesment Method (간편법에 의한 소규모저수지의 수문학적 안전성 평가)

  • Lee, Joo-Heon;Yang, Seung-Man;Kim, Seong-Joon;Kang, Boo-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • Based on the statistical annual report, there are 17,649 reservoirs are operating for the purpose of agricultural water supply in Korea. 58 % of entire agricultural reservoirs had been constructed before 1948 which indicate the termination of required service life and rest of those reservoirs have also exposed to the dam break risk by extreme flood event caused by current ongoing climate change. To prevent damages from dam failure accident of these risky small size dams, it is necessary to evaluate and manage the structural and hydrological safety of the reservoirs. In this study, a simplified evaluation method for hydrologic safety of dam is suggested by using Rational and Creager formula. Hydrologic safety of small scale dams has evaluated by calculating flood discharge capacity of the spillway and compares the results with design frequency of each reservoir. Applicability and stability of suggested simplified method have examined and reviewd by comparing the results from rainfall-runoff modeling with dam break simulation using HEC-HMS. Application results of developed methodology for three sample reservoirs show that simplified assessment method tends to calculate greater inflow to the reservoirs then HEC-HMS model which lead lowered hydrologic safety of reservoirs. Based on the results of application, it is expected that the developed methodology can be adapted as useful tool for small scale reservoir's hydrologic safety evaluation.

Modeling Downstream Flood Damage Prediction Followed by Dam-Break of Small Agricultural Reservoir (농업용 소규모 저수지의 붕괴에 따른 하류부 피해예측 모델링)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Jung, In-Kyun;Jung, Kwan-Soo;Lee, Joo-Heon;Kang, Bu-Sik;Yoon, Chang-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.63-73
    • /
    • 2010
  • This study is to develop a downstream flood damage prediction model for efficient confrontation in case of extreme and flash flood by future probable small agricultural dam break situation. For a Changri reservoir (0.419 million $m^3$) located in Yongin city of Gyeonggi province, a dam break scenario was prepared. With the probable maximum flood (PMF) condition calculated from the probable maximum precipitation (PMP), the flood condition by dam break was generated by using the HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) model. The flood propagation to the 1.12 km section of Hwagok downstream was simulated using HEC-RAS (Hydrologic Engineering Center - River Analysis System) model. The flood damaged areas were generated by overtopping from the levees and the boundaries were extracted for flood damage prediction, and the degree of flood damage was evaluated using IDEM (Inundation Damage Estimation Method) by modifying MD-FDA (Multi-Dimensional Flood Damage Analysis) and regression analysis simple method. The result of flood analysis by dam-break was predicted to occurred flood depth of 0.4m in interior floodplain by overtopping under PMF scenario, and maximum flood depth was predicted up to 1.1 m. Moreover, for the downstream of the Changri reservoir, the total amount of the maximum flood damage by dam-break was calculated nearly 1.2 billion won by IDEM.

Development of a Decision Support System for Reservoir Sizing

  • Kim, Seong-Joon;Noh, Jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.17-23
    • /
    • 2000
  • A decision support system for determining reservoir capacity, named as KORESIDSS (KOwaco's REservoir SIzing Decision Support System), was developed. The system is composed of three subsystems; a database/information subsystem, a model subsystem, and an output subsystem. This system is operated using MS-Windows with a GUI (Graphic User Interface) system developed using Visual Basic 5.0. As a continuous runoff model, the DAWAST model (DAily WAtershed STreamflow model) developed by Noh(1991) was and its analysis module was developed. This system was applied to a newly-planned dam, the Cheongyan Dam, Which will be located in Cheongyang-Gun, Chungcheongnam-Do and it was proved to be applicable in determining reservoir storage.

  • PDF

Floristic Composition and Phytomass in the Drawdown Zone of the Soyangho Reservoir, Korea

  • Cho, Hyunsuk;Jin, Seung-Nam;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.94-104
    • /
    • 2018
  • The Soyangho Reservoir in Korea has a large drawdown zone, with an annual maximum water level fluctuation of 37 m due to dam operations to maintain a stable water supply and control flooding, especially during the monsoon period. The floristic composition, distribution and biomass of the major plant communities in the drawdown zone of the Soyangho Reservoir were assessed in order to understand their responses to the wide water level fluctuation. Species richness of vascular plants was low, and species composition was dominated by herbaceous annuals. Principal coordinates analysis using both flora and environmental data identified slope angle and the distance from the dam as important factors determining floristic composition. The species richness was low in the steep drawdown zone close to the dam, where much of the soil surface was almost devoid of vegetation. In shallower slopes, distant from the dam plant communities composed of mainly annuals were found. The large fluctuation in water level exposed soil where these annuals could establish. An overall biomass of 122 t (metric tons) Dry Matter was estimated for the reservoir, containing ca 3.6 t N (nitrogen) and ca 0.3 t P (phosphorus); the role of the vegetation of the drawdown zone in carbon sequestration and water pollution were briefly discussed.

A Study on the Behaviour of an Earth and Rockfill Dam Due to Reservoir Water (저수변화에 따른 사력댐의 거동 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • The behaviour of an earth and rock-fill dam is complicated due to reservoir water and various materials in zoned dams. Different materials with a wide range of permeability and seasonal variation of reservoir water result in the time dependent post-constructional behaviour. In aged dams it is often required to control water level to keep the dams safe. In this case information on the post-constructional dam behaviour is important. However, present geotechnical knowledge does not fully support the occasion. In this study the post-constructional behaviour of a dam is investigated using coupled finite element models for series of idealized water reservoir cases: impoundment, draw down, seasonal fluctuation with different rising and falling speeds. Numerical results were analysed in respect of geotechnical parameters such as load transfer, hydraulic fracturing potential and stress paths. It is shown that the control of water level is an important factor while operating dams.

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam (용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링)

  • Kim, Yu Kyung;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

Study on Algae Occurrence in Daecheong Reservoir (대청호의 조류발생 분석)

  • Cho, Wan Hee;Yum, Kyung Taek;Kim, Jin Soo;Ban, Yang Jin;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.367-380
    • /
    • 2012
  • There are many long and round shape shores due to terrain characteristics in Daecheong reservoir. Therefore it is indicated different spatial distribution of algae every year since the stream is being regulated by these terrain characteristics and reservoir operation about inflow and outflow discharge. Also oversupply of nutrient salt from tributaries of Daecheong reservoir where pollutants were concentrated generates massive growth of algae and depending on hydrological, reservoir operation condition, those proliferated algae at the stagnant tributaries moves to the mainstream of Daecheong reservoir which could create problems of water quality. In this study, it was analyzed the tendency of algae generation by examining algae occurring status for the last 4 years since 2008, and implemented hydraulic analysis at Daecheong reservoir through numerical tracer simulation by applying 3-dimensional hydrodynamic model, ELCOM. Also it was implemented a quantitative analysis of causal relationship based on the algae generation tendency and hydraulic behavior at Daecheong reservoir. Through numerical tracer simulation in this study, it could be noticed the degree of spread of inflow indicated similar trend to the algae occurring status at Daecheong reservoir and verified the different tendency of algae generation in 2011 unlike previous year caused by the rise of water temperature.