• Title/Summary/Keyword: Korean coastal seas

Search Result 213, Processing Time 0.032 seconds

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

A Study of Long-term Trends of SST in the Korean Seas by Reconstructing Historical Oceanic Data (과거 해양자료 복원을 통한 한반도 주변해역 표층수온의 장기변동 연구)

  • Park, Myung-Hee;Song, Ji-Young;Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.881-897
    • /
    • 2019
  • We reconstructed and digitized the National Institute of Fisheries Science (NIFS) Serial Oceanographic observations (NSO) and Coastal Oceanographic observations (NCO) data attained prior to 1961 through historical oceanographic observation data rescue projects. Increasing trends of long-term sea surface temperature (SST) were shown from the NSO data of 21 available stations for the past 80 to 92 years. In general agreement with previous research results used in the data of the past 50 years, we calculated the rate of temperature rise. As a result of analyzing the spatial distribution of SST change rate in the Korean of shore region using selected oceanographic data, the West Sea and South Sea showed a higher tendency of temperature rise in the offshore area than in the coastal area. However, unlike the results of previous studies, the East Sea (Gangwon Line and Ulsan Line) showed a lower water temperature rise than the coastal stations. Annual fluctuations of NCO's SST data from 1989 to 1998 for three stations representing the East Sea, South Sea, and West Sea, (Jumunjin, Geomundo and Budo, respectively) revealed that the East Sea showed the highest SST increase for the 10 years. The increases were 1.63 ℃ at Jumunjin, 1.16 ℃ at Geomundo, and 0.79 ℃ at Budo. As a result of the investigation, it can be concluded that SST is repeatedly rising and falling with a period of 3 ~ 6 years. Especially, since the 1980s, most of the stations show positive anomalies of SST. Lastly, to understand ocean_atmosphere interactions, we analyzed the correlations between SST of the NCO stations and air temperature around them and the results were 0.76 for the South Sea (Geomundo), 0.34 for the West Sea (Budo), and 0.32 for the East Sea (Jumunjin) with the highest correlation in the South Sea.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

Improvement Plan of NFRDI Serial Oceanographic Observation (NSO) System for Operational Oceanographic System (운용해양시스템을 위한 한국정선해양관측시스템 발전방향)

  • Lee, Joon-Soo;Suh, Young-Sang;Go, Woo-Jin;Hwang, Jae-Dong;Youn, Seok-Hyun;Han, In-Seong;Yang, Joon-Yong;Song, Ji-Young;Park, Myung-Hee;Lee, Keun-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • This study seeks to improve NFRDI Serial Oceanographic observation (NSO) system which has been operated at current observation stations in the Korean Seas since 1961 and suggests the direction of NSO for practical use of Korean operational oceanographic system. For improvement, data handling by human after CTD (Conductivity-Temperature-Depth) observation on the deck, data transmission, data reception in the land station, and file storage into database need to be automated. Software development to execute QA/QC (Quality Assurance/Quality Control) of real-time oceanographic observation data and to transmit the data with conversion to appropriate format automatically will help to accomplish the automation. Inmarsat satellite telecommunication systems with which have already been equipped on board the current observation vessels can realize the real-time transmission of the data. For the near real-time data transmission, CDMA (Code Division Multiple Access) wireless telecommunication can provide efficient transmission in coastal area. Real-time QA/QC procedure after CTD observation will help to prevent errors which can be derived from various causes.

Establishment and future prospects of new international fisheries regime in Northeast Asian region (동북아지역 국제어업협력체제의 구축과 운영방향)

  • 최정윤;최종화
    • The Journal of Fisheries Business Administration
    • /
    • v.30 no.2
    • /
    • pp.1-23
    • /
    • 1999
  • In the Northeast Asian region fisheries agreements of the past regarding high seas as an agreement area were transformed or new agreements were introduced in order to conform to the EEZ regime. However, the existing joint regulatory zone which “open” status is somewhat similar to the high sea not only disappear, but also two new systems were established. To begin with, parties of the agreement claimed their EEZs to be from the territorial sea baselines to the extent set forth, problem of the fishery access of the other party under the agreement is to be solved on the principle of reciprocity and on recognizing of the catch results achieved in the past. In regards to the overlapping zones like neutral zone of the East Sea of Korea(Sea of Japan) and neutral zone to the south of the Cheju Island, provisional measures zones in the Yellow Sea and in the East China Sea, and transitional zone of the Yellow Sea special fisheries management systems reflecting the legal character of the zone involved are applied. Moreover, as fisheries agreements defining open sea as an agreement zone are not able to conform to the EEZ regime, so new fisheries agreements must be taken out from old systems and conceptions, and must be understood and enforced from the new point view. Therefore, countermeasures needed to do so should be developed, and their basic structure is as follows. Firstly, the basic concept of the EEZ regime requires that the coastal states have sovereign rights on their sea zones' natural resources and bear responsibilities appropriate to their allowed jurisdiction. Each Northeast Asian state should adjust the structure of fishing industries and employ advanced fisheries management system, and should make efforts toward such issues of the state policy as increasing fishery resources and preserving ocean environment. Secondly, measures should be developed to solve the international fisheries disputes which are to occur under enforcement of the new fisheries agreements system. In regards to the acts of violation the fisheries laws in the foreign EEZ the principle of jail sentence prohibition is established by the UN Convention on the Law of the Sea, and every fisheries agreement reflects this principle. Therefore, the present question is to consider concrete measures to enable the easy release of the seamen, who violated fisheries laws slightly and well-intently, through establishment and management of the guarantee fund needed to make collateral reasonable. Thirdly, Korean-Russian and Russian-Japanese fisheries relations were formed on the basis of the EEZ regime, since 1992 and 1977 respectively, and are expected to maintain mutually beneficial cooperative character. As for Korean-Chinese-Japanese fisheries relations, the operational problems of overlapping zones, and problem of the permits for EEZ mutual access should be solved on the basis of the principle of reciprocity and equity rather than unilaterally from any side.

  • PDF

A Technical Guide to Operational Regional Ocean Forecasting Systems in the Korea Hydrographic and Oceanographic Agency (I): Continuous Operation Strategy, Downloading External Data, and Error Notification (국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양·기상 자료 내려 받기 및 오류 알림 기능)

  • BYUN, DO-SEONG;SEO, GWANG-HO;PARK, SE-YOUNG;JEONG, KWANG-YEONG;LEE, JOO YOUNG;CHOI, WON-JIN;SHIN, JAE-AM;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.103-117
    • /
    • 2017
  • This note provides technical guide on three issues associated with establishing and automatically running regional ocean forecasting systems: (1) a strategy for continuous production of hourly-interval three-day ocean forecast data, (2) the daily download of ocean and atmospheric forecasting data (i.e., HYCOM and NOAA/NCEP GFS data), which are provided by outside institutions and used as initial condition, surface forcing, and boundary data for regional ocean models, and (3) error notifications to numerical model managers through the Short Message Service (SMS). Guidance on dealing with these three issues is illustrated via solutions implemented by the Korea Hydrographic and Oceanographic Agency, since in embarking on this project we found that this procedural information was not readily available elsewhere. This technical guide is based on our experiences and lessons learned during the process of establishing and operating regional ocean forecasting systems for the East Sea and the Yellow and East China Seas over the 5 year period of 2012-2016. The fundamental approach and techniques outlined in this guide are of use to anyone wanting to establish an automatic regional and coastal ocean forecasting system.

Oceanic Skin-Bulk Temperature Difference through the Comparison of Satellite-Observed Sea Surface Temperature and In-Situ Measurements (인공위성관측 해수면온도와 현장관측 수온의 비교를 통해 본 해양 피층-표층 수온의 차이)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.273-287
    • /
    • 2008
  • Characteristics of skin-bulk sea surface temperature (SST) differences in the Northeast Asia seas were analyzed by utilizing 845 collocated matchup data between NOAA/AVHRR data and oceanic in-situ temperature measurements for selected months from 1994 to 2003. In order to understand diurnal variation of SST within a few meters of the upper ocean, the matchup database were classified into four categories according to day-night and drifter-shipboard measurements. Temperature measurements from daytime drifters showed a good agreement with satellite MCSST (Multi-Channel Sea Surface Temperature) with an RMS error of about $0.56^{\circ}C$. Poor accuracy of SST with an rrns error of $1.12^{\circ}C$ was found in the case of daytime shipboard CTD (Conductivity, Temperature, Depth) measurements. SST differences between MCSST and in-situ measurements are caused by various errors coming from atmospheric moist effect, coastal effect, and others. Most of the remarkable errors were resulted from the diurnal variation of vertical temperature structure within a few meters as well as in-situ oceanic temperatures at different depth, about 20 cm for a satellite-tracked drifting buoy and a few meters for shipboard CTD or moored buoy. This study suggests that satellite-derived SST shows significant errors of about ${\pm}3^{\circ}C$ in some cases and therefore it should be carefully used for one's purpose on the base of in-depth understanding of skin-bulk SST difference and vertical temperature structure in regional sea.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.