• Title/Summary/Keyword: Korean ash

Search Result 4,927, Processing Time 0.034 seconds

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

Electrostatic Beneficiation of Coal Fly Ash Utilizing Triboelectric Charging with Subsequent Electrostatic Separation

  • Lee, Jae-Keun;Kim, Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.804-812
    • /
    • 2001
  • A triboelectrostatic separation system for removing unburned carbon from coal fly ash is designed and evaluated. Fly ash from a coal-fired power plant is used as an accepted additive in concrete where it adds strength, sulfate resistance and reduced cost, provided acceptable levels of unburned carbon are maintained. Unfortunately, unburned carbon in coal fly ash absorbs some of other additives and reduces the concrete strength. This paper describes to investigate dry triboelectrostatic process to separate unburned carbon from coal fly ash and utilize it into economically valuable products. The laboratory-scale triboelectrostatic separation system consists of a particle feeding system, a tribocharger, a separation chamber, and collection systems. Particles of unburned carbon and fly ash can be imparted positive and negative surface charges, respectively, with a copper tribocharger due to differences in the work function values of the particles and the tribocharger, and can be separated by passing them through an external electric field. Results showed that fly ash recovery was strongly dependent on the electric field strength and the particle size. 70wt% of fly ash containing 6.5wt% of carbon contents could be recovered at carbon contents below 3%. The triboelectrostatic separation system showed a potential to be an effective method for removing unburned carbon from coal fly ash.

  • PDF

Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor (벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구)

  • Park, Soo-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

Effects of Fly Ash Supplementation on the Corn, Rye and Alfalfa Yields by Fertilization of Livestock Waste Composting (석탄회 처리 가축분뇨 퇴비가 옥수수, 호맥 및 알팔파의 생산성에 미치는 영향)

  • 고영두;김재황;김두환;유성오;고병구;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • This study was carried out to improve utilization of fly ash. Each animal waste was mixed with fly ash and composted This compost used at forage crops with corn, rye and alfalfa to examine to examine the fertilized efficiency and investigated productivity of forage crops, composition of this copmost and effect of fly ash on soil characteristics and composition. Content of organic matte, P2O5, K2O, CaO, MgO, Mn and B at the soil, which is given fly ash, increased. After the test crops were harvested, pH of the soil was maintained about 7 and contents of organic matter, phosphoric aicd, K, Mg, and B was increased at the soil of used fly ash. As fly ash was mixed, each DM yield of corn and rye was increased 10∼13% and 14∼21% especially alfalfa was increased 35% at the soil which is mixed fly ash with cage layer manure. As fly ash was mixed, each Crude protein (CP) of corn and rye was increased 6∼17% and about 29%, especially, as fly and cage layer manure was mixed CP of alfalfa was increased 33%. In conclusion, as fly ash is mixed with anlmal waste and use at forage crops, It makes the soil good and improve the productivity of forage crops.

Technique for Using Fly Ash as a Bedding Materials at Livestock House (석탄회의 축사 깔짚 이용기술)

  • 고영두;김재황;김두환;고병두;이수칠;이종찬;김삼철
    • Journal of Animal Environmental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • This study was carried out to improve utilization of substitute fly-ash in bedding material of animal waste treatments. The amount used of fly-ash used in a pigpen or beef stall was 50% lower than that of existing bedding material of animal waste treatments. From the results, substitution effect of fly-ash put over the floor of the stable became much better. Effects of processed fly ash as a spread straw decreased ammonia(NH3) and Hydrogensulfide (H2S) gas at beef stall, but there was no benefit of replacement terms. Effect of processed fly ash as a spread straw increased 4∼5 times replacement terms more than control NH3 and H2S gas was decreased. A lot of maggots and porasites were grown at sawdust pig farm, but fly ash inhibited to grow maggots and paraeters. In conclusion, as substituting fly-ash for 5% sawdust(DM basis) in making animal waste into a compost with fly ash, we can reduce the sawdust purchasing costs and produce the high quality of a compost, especially a pollutant as NH3 and H2S gas, etc. from the process of biodegradation, and as substituting fly-ash(1,540 won per ton ; can be extended the replacement period of spreading straw approximatively 4∼5 times) for sawdusts(111,000 won per ton) will increase a real income in livestock house.

Changes in Shear Strength of Bottom ash through the Particle Breakage (입자파쇄에 따른 Bottom ash의 전단강도 변화)

  • Yun, Tae-Kang;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-ho;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.99-105
    • /
    • 2015
  • Bottom ash and fly ash are by-product from thermoelectric power plants. Fly ash is recycled to various field. However, though an output of bottom ash have increased each year, most of them is reclaimed in ash landfill. It is necessary to find a solution that bottom ash is recycled economically and know characteristics of bottom ash to recycle. It is goal to investigate engineering properties of bottom ash, especially the particle breakage, to recycle that. Bottom ash was crushed by impact method according to compaction energy and then compared with or original sample and crushed it in terms of particle size distribution and characteristics of strength. In result, after crushed it, particle finer was increased, especially 2~0.85 mm size, than original. It was displayed a tendency that internal friction of crushed sample was decreased but cohesion of it was not. Therefore, it is important to investigate the engineering properties of bottom ash in terms of the particle breakage to use construction materials for various field.

Study for Korean Fly Ash Characterization (국내 플라이 애쉬의 품질특성에 관한 연구)

  • 강민호;하재담;김기수;차춘수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.95-98
    • /
    • 1998
  • Fly ash is glassy dust collected from coal fired power plant. Recently, much research for fly ash conducted in Korea and fly ash is a valuable material especially when it used in high strength, high flowable, high durability concrete. But it varies with coal source, coal grinding and boiler conditions. Therefore, it is important that quality control of fly ash itself to get high quality concrete. In this study, over 20 samples of Poryong and Samchonpo fly ashs are tested and analyzed. The physical, chemical properties of fly ash and their relationships are investigated and it can be applied to quality control of concrete.

  • PDF

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

The Proper Mixing Ratio of Fly Ash to Bottom Ash for Use of Highway Embankment and Subgrade Materials (석탄회의 도로성토재 및 노상재로서의 활용을 위한 비회와 저회의 적정혼합비)

  • Chun, Byung Sik;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.177-186
    • /
    • 1992
  • In this study, the proper mixing ratio of fly ash to bottom ash is evaluated and bearing capacity of this mixed ash is examined for use of highway embankment and subgrade materials in large quantities. Independently of the mixing ratio of fly ash to bottom ash or the method of compaction test, maximum dry density ${\gamma}_{dmax}$ and CBR value of anthracite mixed coal ash is greater than that of bituminous mixed coal ash. The mixed ashes to contain more fly ash than that of which the ratio of fly ash to bottom ash is 8 : 2, are slaked readily when the water contents of compaction are greater than optimum moisture content O.M.C. The proper mixing ratios of fly ash to bottom ash are about 5 : 5 to 6 : 4. Coal ashes mixed with these ratios exhibit proper physical and geotechnical properties for use of highway embankment and subgrade materials, and enable coal ashes to be used in large quantities.

  • PDF

Effects of Lime, Fly Ash & Rice Straw Ash on Cadmium and head Translocation from Soil to Radish (석회, Fly Ash 및 볏짚재가 토양에서 무우로 이행 축적되는 카드뮴과 납의 함량 감소에 미치는 영향)

  • 한돈희
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.97-126
    • /
    • 1992
  • Greenhouse pot experiments were conducted to evaluate the effects of lime, fly ash and ash(from rice straw) on the cadmium and lead translocation from soil to radish. The soils with low metal contents(Cd 1.52 ppd and Pb 25.37ppm) were prepared and high metal contents (Cd 8.99 rpm and Pb 50.81ppm) were prepared and amended with 0.25%, 0.5%, 1.095, 2.055 each of lime, fly ash and ash. Radishes(Raphanus satiuus) were cultivated and cropped on the soils during 25, 50 and 75 days after sprout, and then cadmium and lead contents of radishes were analyzed by roots and tops. The results obtained are as follows. 1. Lime and ash were effective in raising the soil pH, but fly ash was not effective. 2. The growth of radishes were not impaired by the cadmium and lead contamination but, impaired by soil pH 7.5 or more. 3. Cadmium was accumulated very strongly in radishes and the greater concentration was found in tops than roots, but lead showed no evidence of accumulation in radishes. 4. In general, when the concentrations of lime and ash in soils increased, the uptake of cadmium and lead by radishes decreased, and lime was more effective than ash, while fly ash revealed no effect of reducing the translocation of cadmium and lead from soils to radishes. 5. The uptake of cadmium by radishes decreased more effectively than lead and the uptake of Cd or Pb by radishes grown in the soils with high metal contents decreased more effectively than low metal con tents. 6. Cadmium and lead contents of radishes were negatively correlated with soil pH values and the relationship in cadmium content was stronger than that in lead content.

  • PDF