• 제목/요약/키워드: Korean Voxel Phantoms

검색결과 21건 처리시간 0.02초

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

  • Golshanian, Mohadeseh;Rajabi, Ali Akbar;Kasesaz, Yaser
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1505-1512
    • /
    • 2017
  • Because accelerator-based boron neutron capture therapy (BNCT) systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C) code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ${\sim}25.5{\mu}Sv/s$.

3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구 (A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms)

  • 윤한빈;백철하;전호상;김진성;남지호;이자영;이주혜;박달;김원택;기용간;김동현;원종훈;김호경
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.

Dose coefficients of mesh-type ICRP reference computational phantoms for external exposures of neutrons, protons, and helium ions

  • Yeom, Yeon Soo;Choi, Chansoo;Han, Haegin;Shin, Bangho;Nguyen, Thang Tat;Han, Min Cheol;Kim, Chan Hyeong;Lee, Choonsik
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1545-1556
    • /
    • 2020
  • Recently, the International Commission on Radiological Protection (ICRP) has developed the Mesh-type Reference Computational Phantoms (MRCPs) for adult male and female to overcome the limitations of the current Voxel-type Reference Computational Phantoms (VRCPs) described in ICRP Publication 110 due to the limited voxel resolutions and the nature of voxel geometry. In our previous study, the MRCPs were used to calculate the dose coefficients (DCs) for idealized external exposures of photons and electrons. The present study is an extension of the previous study to include three additional particles (i.e., neutrons, protons, and helium ions) into the DC library by conducting Monte Carlo radiation transport simulations with the Geant4 code. The calculated MRCP DCs were compared with the reference DCs of ICRP Publication 116 which are based on the VRCPs, to appreciate the impact of the new reference phantoms on the DC values. We found that the MRCP DCs of organ/tissue doses and effective doses were generally similar to the ICRP-116 DCs for neutrons, whereas there were significant DC differences up to several orders of magnitude for protons and helium ions due mainly to the improved representation of the detailed anatomical structures in the MRCPs over the VRCPs.

한국인 기준여성 체적소형 모의체 개발 (Development of the Reference Korean Female Voxel Phantom)

  • 함보경;조건우;염연수;정종휘;김찬형;한민철
    • Journal of Radiation Protection and Research
    • /
    • 제37권1호
    • /
    • pp.41-49
    • /
    • 2012
  • 한국인 기준남성 체적소형 모의체 HDRK-Man은 서양인과는 구별되는 한국인에 대한 내 외부피폭 관련 방사선방호량을 계산하기 위하여 개발되었다. 하지만 유효선량을 그 정의에 맞게 계산하기 위해서는 반드시 남녀 한쌍의 인체 전산모의체가 필요하다. 이에 본 연구는 HDRK-Man과 한 쌍을 이루는 한국인 기준여성 체적소형 모의체 HDRK-Woman을 개발하였다. HDRK-Woman의 개발을 위하여 한국인 여성사체로부터 획득된 고해상도 연속절단면 컬러해부영상을 사용하여 제작된 체적소형 모의체의 키, 몸무게 및 장기무게를 한국인 기준자료에 맞게 조정하였다. 전반적인 조정 절차는 ICRP의 체적소형 기준모의체 개발 시 사용된 방법에 따라 키 조정, 뼈 무게 조정, 장기무게 조정, 몸무게 조정의 순으로 진행하였다. 특별히 기존에 사용되던 장기무게 조정 방법의 반복된 절차를 간소화하고 단점을 보완하기 위하여 장기무게 조정 프로그램을 자체적으로 개발하여 사용하였다. 최종 완성된 HDRK-Woman의 체적소 해상도는 x, y, z축 방향 순으로 $2.0351{\times}2.0351{\times}2.0747\;mm^3$이며, 체적소 행렬의 크기는 $261{\times}109{\times}825$이다. 또한 유효선량 계산 시 필요한 장기들을 포함한 총 39개의 장기 및 조직이 표현되어 있다. 본 연구는 HDRK-Woman을 MCNPX 몬테칼로 코드에 입력하여 외부에서 입사하는 광자빔에 대한 장기선량을 계산하였으며, HDRK-Man의 장기선량과 합산하여 한국인에 대한 유효선량 환산계수를 계산하고 ICRP 기준남녀 체적소형 모의체의 유효선량과 비교하였다. 고해상도 컬러해부영상을 기반으로 제작된 기준한국인 성인여성 체적소형 모의체 HDRK-Woman은 장기 및 조직이 정밀하게 표현되어 있으며, 일부 조정이 불가능한 장기를 제외한 대부분의 장기 및 조직들이 한국인 기준자료에 정확하게 일치하도록 조정되었다. 따라서 기준한국인 성인남성 체적소형 모의체 HDRK-Man과 함께 한국인에 대한 장기선량 및 유효선량을 정확하게 평가하는데 활용될 수 있을 것으로 기대된다.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정 (Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom)

  • 이춘식;박상현;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제28권3호
    • /
    • pp.199-206
    • /
    • 2003
  • 대표적인 수학적 팬텀인 MIRD팬텀은 개발 당시 컴퓨터 계산시간을 단축하기 위해 단순화된 수학방정식으로 표현되었으며 본래 내부피폭 선량계산에 이용하기 위해 제작되었으므로 실제 인체구조에 근접하는 정도와 외부피폭 선량계산 용도로서의 적합성 여부를 평가할 필요가 있다. 본 연구에서는 인체의 단층촬영영상을 이용하여 제작된 Zubal 체적소팬텀과 MERD팬텀이 가장 일반적인 피폭모드인 AP 및 PA모드 감마선장에 노출될 때 장기선량 계산결과 및 단층영상을 비교하여 선량차이의 주요 원인이 되는 MIRD팬텀의 몸통두께를 수정하였다. AP와 PA방향으로 입사하는 0.05MeV에서 10MeV의 에너지 범위를 가진 넓고 평행한 단일 에너지 감마선장에 대해 MIRD팬텀과 Zubal팬텀의 장기선량을 MCNP4C를 이용하여 계산 및 비교한 결과 저에너지 영역에서 AP와 PA방향 모두 MIRD팬텀이 Zubal팬텀보다 높은 선량을 받았으며 유효선량의 경우 특히 PA방향, 0.05MeV 광자빔에 대해서 50%에 가까운 선량차이를 보였다 몸통부분 단층영상을 비교한 결과 Zubal팬텀에 비해서 MIRD팬텀의 몸통 두께가 얇아서 나타나는 결과임을 확인하게 되었고 MIRD몸통두께의 최적값을 찾아내기 위해 20cm에서 32cm까지 변화시켜가며 원전 작업환경에서 가장 많이 받게되는 0.5MeV 감마선에 대한 유효선량을 계산하여 비교하였다. AP방향에서는 24cm, PA방향에서는 28cm일 때 최소의 선량차이를 보이는 것으로 나타났고 이에 따라 몸통모델을 수정하였다. 수정된 MIRD팬텀을 이용하여 장기선량을 재계산하여 Zubal팬텀의 선량과 비교한 결과 특히 PA방향에서 큰 과대평가를 보였던 장기들의 선량차이가 현저하게 줄었고 유효선량의 경우 0.5 MeV 광자빔에 대해 AP, PA방향 각각 -0.5%와 7.3%의 낮은 선량차이를 보였다. Zubal팬텀에 의해 계산된 선량환산인자는 ICRP74에서 제공하는 값과 큰 차이를 보이고 있으며 수정된 MIRD팬텀은 Zubal팬텀의 값에 준하는 결과를 보였다. 본 연구에서 수정된 MIRD팬텀은 기존에 사용되던 선량환산계수의 수정에 사용될 수 있으며 수학적팬텀의 장점을 살리면서 실제 인체에 근접한 선량계산을 수행할 수 있다.

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom ;Chansoo Choi ;Bangho Shin ;Suhyeon Kim ;Haegin Han ;Sungho Moon ;Gahee Son;Hyeonil Kim;Thang Tat Nguyen;Beom Sun Chung;Se Hyung Lee ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4698-4707
    • /
    • 2022
  • As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.