• Title/Summary/Keyword: Korean Stress Model

Search Result 5,596, Processing Time 0.044 seconds

Stress Modeling for Cyclic Fatigue Life Prediction of Alumina Ceramics (알루미나 세라믹스의 반복 피로 수명 예측을 위한 응력 모델)

  • 이홍림;박성은;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1141-1146
    • /
    • 1994
  • Cyclic fatigue experiment was carried out to predict the life time of alumina ceramics. Four kinds of model were suggested to obtain the adequate representative static stress corresponding to the cyclic stress applied to the alumina specimens. Arithmetic mean stress model gives 21.81 of the crack growth exponent, integrated stress model gives 22.15, maximum stress model gives 24.57, and equivalent static stress model gives 24.43. It is considered that the equivalent static stress model is the most reasonable and gives the best adequate crack growth exponents value.

  • PDF

Investigation of One-dimensional Stress-Release Mechanism in Sand from Model Test

  • Zhuang, Li;Kim, Dongwook;Kim, Ukgie
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.17-27
    • /
    • 2013
  • This paper explores stress release induced by unloading in dry sand. A series of model tests were carried out to measure stresses developed in testing sand during loading and those released during unloading for different boundary conditions. It was found that stress in the sand increased linearly with applied load. At the onset of unloading, almost no stress release was observed. Significant stress release took place when the shear stress in the sand induced by unloading exceeded the frictional resistance and caused movement of sand particles. The initiation and the magnitude of stress release depend on the stress condition prior to unloading, the decrease of external load, and also the frictional resistance in sand. A new conceptual stress-release model was next developed based on the model test results by considering the fundamental frictional behavior of granular materials.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Evaluation of Resilient Modulus Models for Recycled Materials (재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

Study on the Second Moment Turbulence Model in a Square Sectioned $180^{\circ}$ Bend (정사각단면을 갖는 $180^{\circ}$ 곡관내의 2차 모멘트 난류모형에 관한 연구)

  • 김명호;염성현;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1203-1217
    • /
    • 1994
  • In the present study, in order to analyze a turbulent flow in a square sectiond 180.deg. bend, Kim's low Reynolds number second moment turbulence closure is adopted. In this model, turbulence model constants in the wall region are modified as functions of turbulent Reynolds number by use of near wall turbulent universal properties based on Laufer's experimental results of Reynolds stress distriburions. Algebraic stress model and Reynolds stress equation model are used to verify the low Reynolds number second moment closure. The application of the present low Reynolds number algebraic stress model to the prediction of a square sectioned 180.deg. bend flow gives improved velocities and Reynolds stresses profiles compared with those obtained by using the van Driest mixing length model and present low Reynolds number Reynolds stress equation model.

Stress-Path Dependent Behavior of Granular Soil (입상토의 응력경로 의존거동)

  • 정진섭;권원식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 1998
  • The nature of stress-path dependency, the principle that governs deformations in granular soil, and the use of Lade's double work-hardening model for predicting soil response for a variety of stress-paths have been investigated, and are examined The test results and the analyses presented show that under some conditions granular soils exhibit stress-path dependent behavior. For stress-paths involving unloading or reloading, the stress-path with the higher average stress level produces the larger strains, whereas all stress-paths having the same intial states of stress, and involving only primary loading conditions, produce strains of similar magnitudes. Experimental evidence indicates that the stress- path dependent response obtained from the double work-hardening model is also observed for real soils. It is concluded that the influence of stress history on the friction angle is negligible and the strains increment direction is uniquely determined from the state of stress but is not perpendicular to the yield surface. The strains calculated from Lade's double work-hardening model are in reasonable agreement with those measured.

  • PDF

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

A Model for Nursing Students' Stress (간호학생의 스트레스 지각, 대처, 스트레스결과에 대한 구조모형)

  • Lee, Mi-Ra;Chung, Hyun-Sook;Cho, Mee-Kyung
    • Research in Community and Public Health Nursing
    • /
    • v.11 no.2
    • /
    • pp.321-332
    • /
    • 2000
  • The purpose of this study was to test the hypothetical model designed to explain nursing students' perceived stress, coping levels, and stress outcomes. This hypothetical model was based on the Kim. Jung Hee(l987)' s stress model and stress-related literature. Exogenous variables were self-efficacy. hardiness. social support. and exercise. Endogenous variables were stress perception. coping levels. and stress outcomes. Empirical data for testing the hypothetical model consisted of 205 nursing students. SAS PC Program and LISREL 8.12a program were used for descriptive statistics and linear structural relationship(LISREL) modeling. The results were as follows. 1) The overall fit of the hypothetical model to the data was good( $x^2$=78.41(p=0.010), $x^2$/ df=1.50. RMSEA=0.05, standardized RMR= 0.05, GFI=0.95, AGFI=0.91, NNFI=0.90, NFI=0.94). 2) The results of statistical testing of the hypotheses were as follows. (1) As expected. self-efficacy had a significant effect on stress perception. But. hardiness. social support, and exercise did not have a significant effect on stress perception. Self-efficacy, hardiness. social support, and exercise explained 12% of the total variance of stress perception. (2) As expected, self-efficacy, hardiness, social support, exercise, and stress perception had a significant effect on coping behavior, Self-efficacy, hardiness, social support, exercise, and stress perception explained 53% of the total variance of coping behavior. (3) As expected, stress perception and coping behavior had a significant effect on stress outcomes. Stress perception and coping behavior explained 84% of the total variance of stress outcomes. In conclusion, the hypothetical model of this study was confirmed in explaining and predicting stress perception, coping levels, and stress outcomes in nursing students. And these findings suggest the need to develop nursing intervention to enhance self-efficacy, hardiness, social support, and exercise to decrease the harmful outcomes of stress.

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT (임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석)

  • Hur Jin-Kyung;Kay Kee-Sung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

Stress Analysis on Weld Zone of Railway Bogie Frame Using Coupling Model (커플링 모델을 이용한 대차프레임 용접부 응력 해석)

  • Jung, Soon-Chul;Jun, Hyun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.830-835
    • /
    • 2007
  • In this paper, stress analyses using shell and solid elements on weld zone of railway bogie frame were performed. To calculate stress distribution on weld zone, a coupling model using shell and solid elements was suggested. For this purpose, we performed specimen analyses on T-type solid and shell model of T-type panels which were modeled using shell elements, solid elements and coupled elements, respectively. The result showed that the stress concentration at weld zone was occurred in solid model, but it didn't occur in shell model. And the stress distribution of coupled model was similar to that of solid model. Also, we applied the coupled modeling method on the analysis on weld zone of bogie frame. The stress distribution of coupled model showed much higher compared to that of shell only model. Therefore, the coupled model method is highly recommended for the stress analysis in weld zone of bogie frame.

  • PDF