• Title/Summary/Keyword: Korean Society of Radiation Oncology

Search Result 3,073, Processing Time 0.02 seconds

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.