• Title/Summary/Keyword: Korean Society of Plant Protection

Search Result 1,198, Processing Time 0.029 seconds

Development and Evaluation of Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Tylenchulus semipenetrans Using DNA Extracted from Soil

  • Song, Zhi-Qiang;Cheng, Ju-E;Cheng, Fei-Xue;Zhang, De-Yong;Liu, Yong
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.184-192
    • /
    • 2017
  • Tylenchulus semipenetrans is an important and widespread plant-parasitic nematode of citrus worldwide and can cause citrus slow decline disease leading to significant reduction in tree growth and yield. Rapid and accurate detection of T. semipenetrans in soil is important for the disease forecasting and management. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed to detect T. semipenetrans using DNA extracted from soil. A set of five primers was designed from the internal transcribed spacer region (ITS1) of rDNA, and was highly specific to T. semipenetrans. The LAMP reaction was performed at $63^{\circ}C$ for 60 min. The LAMP product was visualized directly in one reaction tube by adding SYBR Green I. The detection limit of the LAMP assay was $10^{-2}J2/0.5g$ of soil, which was 10 times more sensitive than conventional PCR ($10^{-1}J2/0.5g$ of soil). Examination of 24 field soil samples revealed that the LAMP assay was applicable to a range of soils infested naturally with T. semipenetrans, and the total assay time was less than 2.5 h. These results indicated that the developed LAMP assay is a simple, rapid, sensitive, specific and accurate technique for detection of T. semipenetrans in field soil, and contributes to the effective management of citrus slow decline disease.

Nigrospora Species Associated with Various Hosts from Shandong Peninsula, China

  • Hao, Yuanyuan;Aluthmuhandiram, Janith V.S.;Chethana, K.W. Thilini;Manawasinghe, Ishara S.;Li, Xinghong;Liu, Mei;Hyde, Kevin D.;Phillips, Alan J.L.;Zhang, Wei
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.169-183
    • /
    • 2020
  • Nigrospora is a monophyletic genus belonging to Apiosporaceae. Species in this genus are phytopathogenic, endophytic, and saprobic on different hosts. In this study, leaf specimens with disease symptoms were collected from host plants from the Shandong Peninsula, China. The fungal taxa associated with these leaf spots were studied using morphology and phylogeny based on ITS, TEF1, and TUB2 gene regions. In this article, we report on the genus Nigrospora with N. gorlenkoana, N. oryzae, N. osmanthi, N. rubi, and N. sphaerica identified with 13 novel host associations including crops with economic importance such as bamboo and Chinese rose.

Microbial Community Dysbiosis and Functional Gene Content Changes in Apple Flowers due to Fire Blight

  • Kong, Hyun Gi;Ham, Hyeonheui;Lee, Mi-Hyun;Park, Dong Suk;Lee, Yong Hwan
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.404-412
    • /
    • 2021
  • Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.

Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

  • Seong Hyeon Yoon;Su Bin Lee;Eseul Baek;Ho-Jong Ju;Ju-Yeon Yoon
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.286-294
    • /
    • 2023
  • Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (formerly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich-enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8-99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8-99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.

A Real-Time PCR Assay for the Quantitative Detection of Ralstonia solanacearum in Horticultural Soil and Plant Tissues

  • Chen, Yun;Zhang, Wen-Zhi;Liu, Xin;Ma, Zhong-Hua;Li, Bo;Allen, Caitilyn;Guo, Jian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.193-201
    • /
    • 2010
  • A specific and rapid real-time PCR assay for detecting Ralstonia solanacearum in horticultural soil and plant tissues was developed in this study. The specific primers RSF/RSR were designed based on the upstream region of the UDP-3-O-acyl-GlcNAc deacetylase gene from R. solanacearum, and a PCR product of 159 bp was amplified specifically from 28 strains of R. solanacearum, which represent all genetically diverse AluI types and all 6 biovars, but not from any other nontarget species. The detection limit of $10^2\;CFU/g$ tomato stem and horticultural soil was achieved in this real-time PCR assay. The high sensitivity and specificity observed with field samples as well as with artificially infected samples suggested that this method might be a useful tool for detection and quantification of R. solanacearum in precise forecast and diagnosis.

Introduction of Plant Variety Protection Right and Plant Patent System of Ornamental Crops in U.S.A (미국 화훼류 품종보호제도 및 식물특허 운영실태)

  • Lee, Ho-Sun;Choi, Keun Jin;Hwang, Suk-Jung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.325-332
    • /
    • 2008
  • This paper outlines the system and operation of plant variety protection right and plant patent of ornamental crops in USA to guide for application of new varieties developed in Korea and to use for national examination of applied variety from USA. The Plant Variety Protection Act(PVPA) in USA is given as PVPR to the developers of new variety for the seed propagating crops and tubers and provides as plant patent for asexually reproducing crops. A certificate of PVPR and plant patent is awarded to an owner of a variety has shown that it is new, distinct from other varieties, genetically uniform and stable through successive generations by official evaluation without the growing trial. The term of protection for plant patent and PVPR for most crops is 20 years but 25 years for trees, shrubs, and vines. The application of ornamental variety in USA is mostly for plant patent. The application of ornamental crops accounted for 87% of total applications for plant patent. The ratio of new variety applications for plant patent from national and foreign countries is not significant differences.

Partial Biological and Molecular Characterization of Tomato yellow fruit ring virus Isolates from Potato

  • Pourrahim, Reza;Golnaraghi, Alireza;Farzadfar, Shirin;Ohshima, Kazusato
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.390-400
    • /
    • 2012
  • Eight potato-producing provinces of Iran were surveyed during the growing seasons of 2004-2006 to detect the presence of Tomato yellow fruit ring virus (TYFRV), a tentative species in the genus Tospovirus. A total of 1,957 potato leaf samples were collected from plants with tospovirus-like symptoms of chlorotic or necrotic spots, chlorosis and necrosis. The samples were tested by enzyme-linked immunosorbent assay using TYFRV-specific antibodies. Among those tested, 498 samples (25.4%) were found to be infected with the virus. The virus was detected in 72.4% of the potato fields in all provinces surveyed. Thirteen potato isolates of TYFRV were selected for further biological and molecular studies. Based on their reactions on Nicotiana tabacum plants, the isolates were separated into two groups, namely L (local infection) and N (systemic infection). The nucleotide sequences of the nucleoprotein (N) genes of the isolates were determined and compared with the homologous sequences in Genbank. No recombination evidence was found in the isolates using different recombination-detecting programs. In the phylogenetic tree, the potato isolates fell into two major groups: IRN-1 and IRN-2 corresponding to the two biologically separated groups. This study shows for the first time the biological and phylogenetic relationships of geographically distant TYFRV isolates from potatoes in the mid-Eurasian country of Iran.

The Endo-β-1,4-Glucanase of Bacillus amyloliquefaciens Is Required for Optimum Endophytic Colonization of Plants

  • Fan, Xiaojing;Yang, Ruixian;Qiu, Sixin;Cai, Xueqing;Zou, Huasong;Hu, Fangping
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.946-952
    • /
    • 2016
  • The eglS gene in Bacillus amyloliquefaciens encodes an endo-β-1,4-glucanase that belongs to glycosyl hydrolase family 5. In this study, a disruption mutant of gene eglS was constructed to examine its role in bacterial adaptation in plants. The mutant TB2k, eglS gene inactivated bacterial strain, was remarkably impaired in extracellular cellulase activity. When inoculated on Brassica campestris, the TB2k population was reduced by more than 60% compared with the wild-type strain in the root, stem, and leaf tissues. Overexpression of eglS in the wild-type strain increased the bacteria population in the plant tissues. Further studies revealed that the transcription level of eglS was correlated with bacterial population. These data demonstrate that endo-β-1,4-glucanase of B. amyloliquefaciens is required for its optimal endophytic colonization.