• Title/Summary/Keyword: Korean News

Search Result 4,379, Processing Time 0.044 seconds

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

The Analysis of the Current Status of Medical Accidents and Disputes Researched in the Korean Web Sites (인터넷 사이트를 통해 살펴본 의료사고 및 의료분쟁의 현황에 관한 분석)

  • Cha, Yu-Rim;Kwon, Jeong-Seung;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.4
    • /
    • pp.297-316
    • /
    • 2006
  • The increasing tendency of medical disputes is one of the remarkable social phenomena. Especially we must not overlook the phenomenon that production and circulation of information related to medical accidents is increasing rapidly through the internet. In this research, we evaluated the web sites which provide the information related to medical accidents using the keyword "medical accidents" in March 2006, and classified the 28 web sites according to the kinds of establishers. We also analyzed the contents of the sites, and checked and compared the current status of the web sites and problems that have to be improved. Finally, we suggested the possible solutions to prevent medical accidents. The detailed results were listed below. 1. Medical practitioners, general public, and lawyers were all familiar with and prefer the term "medical accidents" mainly. 2. In the number of sites searched by the keyword "medical accidents", lawyer had the most sites and medical practitioners had the least ones. 3. Many sites by general public and lawyers had their own medical record analysts but there was little professional analysts for dentistry. 4. General public were more interested in the prevention of medical accidents but the lawyers were more interested in the process after medical accidents. The sites by medical practitioners dealt with the least remedies of medical accidents, compared with other sites. 5. General public wanted the third party such as government intervention into the disputes including the medical dispute arbitration law or/and the establishment of independent medical dispute judgment institution. 6. In the comparison among the establishers of web sites, medical practitioners dealt with the least examples of medical accidents. 7. The suggestion of cases in counseling articles related to dental accidents were considered less importantly than the reality. 8. Whereas there were many articles about domestic cases related to the bloody dental treatment, in the open counseling articles the number of dental treatment regarding to non insurance treatment was large. 9. In comparing offered information of medical accidents based on the establishers, general public offered vocabularies, lawyers offered related laws and medical practitioners offered medical knowledge relatively. 10. They all cited the news pressed by the media to offer the current status of domestic medical accidents. Especially among the web sites by general public, NGOs provided the plentiful statistical data related to medical accidents. 11. The web sites that collect the medical accidents were only two. As a result of our research, we found out that, in the flood of information, medical disputes can be occurred by the wrong information from third party, and the medical practitioners have the most passive attitudes on the medical accidents. Thus, it is crucial to have the mutual interchange and exchange of information between lawyer, patients and medical practitioners, so that based on clear mutual comprehension we can solve the accidents and disputes more positively and actively.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Differential Effects of Recovery Efforts on Products Attitudes (제품태도에 대한 회복노력의 차별적 효과)

  • Kim, Cheon-GIl;Choi, Jung-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.33-58
    • /
    • 2008
  • Previous research has presupposed that the evaluation of consumer who received any recovery after experiencing product failure should be better than the evaluation of consumer who did not receive any recovery. The major purposes of this article are to examine impacts of product defect failures rather than service failures, and to explore effects of recovery on postrecovery product attitudes. First, this article deals with the occurrence of severe and unsevere failure and corresponding service recovery toward tangible products rather than intangible services. Contrary to intangible services, purchase and usage are separable for tangible products. This difference makes it clear that executing an recovery strategy toward tangible products is not plausible right after consumers find out product failures. The consumers may think about backgrounds and causes for the unpleasant events during the time gap between product failure and recovery. The deliberation may dilutes positive effects of recovery efforts. The recovery strategies which are provided to consumers experiencing product failures can be classified into three types. A recovery strategy can be implemented to provide consumers with a new product replacing the old defective product, a complimentary product for free, a discount at the time of the failure incident, or a coupon that can be used on the next visit. This strategy is defined as "a rewarding effort." Meanwhile a product failure may arise in exchange for its benefit. Then the product provider can suggest a detail explanation that the defect is hard to escape since it relates highly to the specific advantage to the product. The strategy may be called as "a strengthening effort." Another possible strategy is to recover negative attitude toward own brand by giving prominence to the disadvantages of a competing brand rather than the advantages of its own brand. The strategy is reflected as "a weakening effort." This paper emphasizes that, in order to confirm its effectiveness, a recovery strategy should be compared to being nothing done in response to the product failure. So the three types of recovery efforts is discussed in comparison to the situation involving no recovery effort. The strengthening strategy is to claim high relatedness of the product failure with another advantage, and expects the two-sidedness to ease consumers' complaints. The weakening strategy is to emphasize non-aversiveness of product failure, even if consumers choose another competitive brand. The two strategies can be effective in restoring to the original state, by providing plausible motives to accept the condition of product failure or by informing consumers of non-responsibility in the failure case. However the two may be less effective strategies than the rewarding strategy, since it tries to take care of the rehabilitation needs of consumers. Especially, the relative effect between the strengthening effort and the weakening effort may differ in terms of the severity of the product failure. A consumer who realizes a highly severe failure is likely to attach importance to the property which caused the failure. This implies that the strengthening effort would be less effective under the condition of high product severity. Meanwhile, the failing property is not diagnostic information in the condition of low failure severity. Consumers would not pay attention to non-diagnostic information, and with which they are not likely to change their attitudes. This implies that the strengthening effort would be more effective under the condition of low product severity. A 2 (product failure severity: high or low) X 4 (recovery strategies: rewarding, strengthening, weakening, or doing nothing) between-subjects design was employed. The particular levels of product failure severity and the types of recovery strategies were determined after a series of expert interviews. The dependent variable was product attitude after the recovery effort was provided. Subjects were 284 consumers who had an experience of cosmetics. Subjects were first given a product failure scenario and were asked to rate the comprehensibility of the failure scenario, the probability of raising complaints against the failure, and the subjective severity of the failure. After a recovery scenario was presented, its comprehensibility and overall evaluation were measured. The subjects assigned to the condition of no recovery effort were exposed to a short news article on the cosmetic industry. Next, subjects answered filler questions: 42 items of the need for cognitive closure and 16 items of need-to-evaluate. In the succeeding page a subject's product attitude was measured on an five-item, six-point scale, and a subject's repurchase intention on an three-item, six-point scale. After demographic variables of age and sex were asked, ten items of the subject's objective knowledge was checked. The results showed that the subjects formed more favorable evaluations after receiving rewarding efforts than after receiving either strengthening or weakening efforts. This is consistent with Hoffman, Kelley, and Rotalsky (1995) in that a tangible service recovery could be more effective that intangible efforts. Strengthening and weakening efforts also were effective compared to no recovery effort. So we found that generally any recovery increased products attitudes. The results hint us that a recovery strategy such as strengthening or weakening efforts, although it does not contain a specific reward, may have an effect on consumers experiencing severe unsatisfaction and strong complaint. Meanwhile, strengthening and weakening efforts were not expected to increase product attitudes under the condition of low severity of product failure. We can conclude that only a physical recovery effort may be recognized favorably as a firm's willingness to recover its fault by consumers experiencing low involvements. Results of the present experiment are explained in terms of the attribution theory. This article has a limitation that it utilized fictitious scenarios. Future research deserves to test a realistic effect of recovery for actual consumers. Recovery involves a direct, firsthand experience of ex-users. Recovery does not apply to non-users. The experience of receiving recovery efforts can be relatively more salient and accessible for the ex-users than for non-users. A recovery effort might be more likely to improve product attitude for the ex-users than for non-users. Also the present experiment did not include consumers who did not have an experience of the products and who did not perceive the occurrence of product failure. For the non-users and the ignorant consumers, the recovery efforts might lead to decreased product attitude and purchase intention. This is because the recovery trials may give an opportunity for them to notice the product failure.

  • PDF

Analysis of Metadata Standards of Record Management for Metadata Interoperability From the viewpoint of the Task model and 5W1H (메타데이터 상호운용성을 위한 기록관리 메타데이터 표준 분석 5W1H와 태스크 모델의 관점에서)

  • Baek, Jae-Eun;Sugimoto, Shigeo
    • The Korean Journal of Archival Studies
    • /
    • no.32
    • /
    • pp.127-176
    • /
    • 2012
  • Metadata is well recognized as one of the foundational factors in archiving and long-term preservation of digital resources. There are several metadata standards for records management, archives and preservation, e.g. ISAD(G), EAD, AGRkMs, PREMIS, and OAIS. Consideration is important in selecting appropriate metadata standards in order to design metadata schema that meet the requirements of a particular archival system. Interoperability of metadata with other systems should be considered in schema design. In our previous research, we have presented a feature analysis of metadata standards by identifying the primary resource lifecycle stages where each standard is applied. We have clarified that any single metadata standard cannot cover the whole records lifecycle for archiving and preservation. Through this feature analysis, we analyzed the features of metadata in the whole records lifecycle, and we clarified the relationships between the metadata standards and the stages of the lifecycle. In the previous study, more detailed analysis was left for future study. This paper proposes to analyze the metadata schemas from the viewpoint of tasks performed in the lifecycle. Metadata schemas are primarily defined to describe properties of a resource in accordance with the purposes of description, e.g. finding aids, records management, preservation and so forth. In other words, the metadata standards are resource- and purpose-centric, and the resource lifecycle is not explicitly reflected in the standards. There are no systematic methods for mapping between different metadata standards in accordance with the lifecycle. This paper proposes a method for mapping between metadata standards based on the tasks contained in the resource lifecycle. We first propose a Task Model to clarify tasks applied to resources in each stage of the lifecycle. This model is created as a task-centric model to identify features of metadata standards and to create mappings among elements of those standards. It is important to categorize the elements in order to limit the semantic scope of mapping among elements and decrease the number of combinations of elements for mapping. This paper proposes to use 5W1H (Who, What, Why, When, Where, How) model to categorize the elements. 5W1H categories are generally used for describing events, e.g. news articles. As performing a task on a resource causes an event and metadata elements are used in the event, we consider that the 5W1H categories are adequate to categorize the elements. By using these categories, we determine the features of every element of metadata standards which are AGLS, AGRkMS, PREMIS, EAD, OAIS and an attribute set extracted from DPC decision flow. Then, we perform the element mapping between the standards, and find the relationships between the standards. In this study, we defined a set of terms for each of 5W1H categories, which typically appear in the definition of an element, and used those terms to categorize the elements. For example, if the definition of an element includes the terms such as person and organization that mean a subject which contribute to create, modify a resource the element is categorized into the Who category. A single element can be categorized into one or more 5W1H categories. Thus, we categorized every element of the metadata standards using the 5W1H model, and then, we carried out mapping among the elements in each category. We conclude that the Task Model provides a new viewpoint for metadata schemas and is useful to help us understand the features of metadata standards for records management and archives. The 5W1H model, which is defined based on the Task Model, provides us a core set of categories to semantically classify metadata elements from the viewpoint of an event caused by a task.

Study on the effect of small and medium-sized businesses being selected as suitable business types, on the franchise industry (중소기업적합업종선정이 프랜차이즈산업에 미치는 영향에 관한 연구)

  • Kang, Chang-Dong;Shin, Geon-Chel;Jang, Jae Nam
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.1-23
    • /
    • 2012
  • The conflict between major corporations and small and medium-sized businesses is being aggravated, the trickle down effect is not working properly, and, as the controversy surrounding the effectiveness of the business limiting system continues to swirl, the plan proposed to protect the business domain of small and medium-sized businesses, resolve polarization between these businesses and large corporations, and protect small family run stores is the suitable business type designation system for small and medium-sized businesses. The current status of carrying out this system of selecting suitable business types among small and medium-sized businesses involves receiving applications for 234 items among the suitable business types and items from small and medium-sized businesses in manufacturing, and then selecting the items of the consultative group by analyzing and investigating the actual conditions. Suitable business type designation in the service industry will involve designation with priority on business types that are experiencing social conflict. Three major classifications of the service industry, related to the livelihood of small and medium-sized businesses, will be first designated, and subsequently this will be expanded sequentially. However, there is the concern that when designated as a suitable business type or item, this will hinder the growth motive for small to medium-sized businesses, and designation all cause decrease in consumer welfare. Also it is highly likely that it will operate as a prior regulation, cause side-effects by limiting competition systematically, and also be in violation against the main regulations of the FTA system. Moreover, it is pointed out that the system does not sufficiently reflect reverse discrimination factor against large corporations. Because conflict between small to medium sized businesses and large corporations results from the expansion of corporations to the service industry, which is unrelated to their key industry, it is necessary to introduce an advanced contract method like a master franchise or local franchise system and to develop local small to medium sized businesses through a franchise system to protect these businesses and dealers. However, this method may have an effect that contributes to stronger competitiveness of small to medium sized franchise businesses by advancing their competitiveness and operational methods a step further, but also has many negative aspects. First, as revealed by the Ministry of Knowledge Economy, the franchise industry is contributing to the strengthening of competitiveness through the economy of scale by organizing existing individual proprietors and increasing the success rate of new businesses. It is also revealed to be a response measure by the government to stabilize the economy of ordinary people and is emphasized as a 'useful way' to revitalize the service industry and improve the competitiveness of individual proprietors, and has been involved in contributions to creating jobs and expanding the domestic market by providing various services to consumers. From this viewpoint, franchises fit the purpose of the suitable business type system and is not something that is against it. Second, designation as a suitable business type may decrease investment for overseas expansion, R&D, and food safety, as well negatively affect the expansion of overseas corporations that have entered the domestic market, due to the contraction and low morale of large domestic franchise corporations that have competitiveness internationally. Also because domestic franchise businesses are hard pressed to secure competitiveness with multinational overseas franchise corporations that are operating in Korea, the system may cause difficulty for domestic franchise businesses in securing international competitiveness and also may result in reverse discrimination against these overseas franchise corporations. Third, the designation of suitable business type and item can limit the opportunity of selection for consumers who have up to now used those products and can cause a negative effect that reduces consumer welfare. Also, because there is the possibility that the range of consumer selection may be reduced when a few small to medium size businesses monopolize the market, by causing reverse discrimination between these businesses, the role of determining the utility of products must be left ot the consumer not the government. Lastly, it is desirable that this is carried out with the supplementation of deficient parts in the future, because fair trade is already secured with the enforcement of the franchise trade law and the best trade standard of the Fair Trade Commission. Overlapping regulations by the suitable business type designation is an excessive restriction in the franchise industry. Now, it is necessary to establish in the domestic franchise industry an environment where a global franchise corporation, which spreads Korean culture around the world, is capable of growing, and the active support by the government is needed. Therefore, systems that do not consider the process or background of the growth of franchise businesses and harm these businesses for the sole reason of them being large corporations must be removed. The inhibition of growth to franchise enterprises may decrease the sales of franchise stores, in some cases even bankrupt them, as well as cause other problems. Therefore the suitable business type system should not hinder large corporations, and as both small dealers and small to medium size businesses both aim at improving competitiveness and combined growth, large corporations, small dealers and small to medium sized businesses, based on their mutual cooperation, should not include franchise corporations that continue business relations with them in this system.

  • PDF

A study on the Greeting's Types of Ganchal in Joseon Dynasty (간찰(簡札)의 안부인사(安否人事)에 대한 유형(類型) 연구(硏究))

  • Jeon, Byeong-yong
    • (The)Study of the Eastern Classic
    • /
    • no.57
    • /
    • pp.467-505
    • /
    • 2014
  • I am working on a series of Korean linguistic studies targeting Ganchal(old typed letters in Korea) for many years and this study is for the typology of the [Safety Expression] as the part. For this purpose, [Safety Expression] were divided into a formal types and semantic types, targeting the Chinese Ganchal and Hangul Ganchal of modern Korean Language time(16th century-19th century). Formal types can be divided based on whether Normal position or not, whether Omission or not, whether the Sending letter or not, whether the relationship of the high and the low or not. Normal position form and completion were made the first type which reveal well the typicality of the [Safety Expression]. Original position while [Own Safety] omitted as the second type, while Original position while [Opposite Safety] omitted as the third type, Original position while [Safety Expression] omitted as the fourth type. Inversion type were made as the fifth type which is the most severe solecism in [Safety Expression]. The first type is refers to Original position type that [Opposite Safety] precede the [Own Safety] and the completion type that is full of semantic element. This type can be referred to most typical and normative in that it equipped all components of [Safety Expression]. A second type is that [Safety Expression] is composed of only the [Opposite Safety]. This type is inferior to the first type in terms of set pattern, it is never outdone when it comes to the appearance frequency. Because asking [Opposite Safety] faithfully, omitting [Own Safety] dose not greatly deviate politeness and easy to write Ganchal, it is utilized. The third type is the Original position type showing the configuration of the [Opposite Safety]+Own Safety], but [Opposite Safety] is omitted. The fourth type is a Original position type showing configuration of the [Opposite Safety+Own Safety], but [Safety Expression] is omitted. This type is divided into A ; [Safety Expression] is entirely omitted and B ; such as 'saving trouble', the conventional expression, replace [Safety Expression]. The fifth type is inversion type that shown to structure of the [Own Safety+Opposite Safety], unlike the Original position type. This type is the most severe solecism type and real example is very rare. It is because let leading [Own Safety] and ask later [Opposite Safety] for face save is offend against common decency. In addition, it can be divided into the direct type that [Opposite Safety] and [Own Safety] is directly connected and indirect type that separate into the [story]. The semantic types of [Safety Expression] can be classified based on whether Sending letter or not, fast or slow, whether intimate or not, and isolation or not. For Sending letter, [Safety Expression] consists [Opposite Safety(Climate+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)]. At [Opposite safety], [Climate] could be subdivided as [Season] information and [Climate(weather)] information. Also, [Mental state] is divided as receiver's [Family Safety Mental state] and [Individual Safety Mental state]. In [Own Safety], [Status] is divided as receiver's traditional situation; [Recent condition] and receiver's ongoing situation; [Present condition]. [Inquiry after health] is also subdivided as receiver's [Family Safety] and [Individual Safety], [Safety] is as [Family Safety] and [Individual Safety]. Likewise, [Inquiry after health] or [Safety] is usually used as pairs, in dimension of [Family] and [Individual]. This phenomenon seems to have occurred from a big family system, which is defined as taking care of one's parents or grand parents. As for the Written Reply, [Safety Expression] consists [Opposite Safety (Reception+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)], and only in [Opposite safety], a difference in semantic structure happens with Sending letter. In [Opposite Safety], [Reception] is divided as [Letter] which is Ganchal that is directly received and [Message], which is news that is received indirectly from people. [Safety] is as [Family Safety] and [Individual Safety], [Mental state] also as [Family Safety Mental state] and [Individual Safety Mental state].