• Title/Summary/Keyword: Korean National Assembly

Search Result 1,349, Processing Time 0.034 seconds

Analysis of Stresses Along the Underfill/chip Interface (언더필/칩 계면의 응력 해석)

  • Park, Ji-Eun;Iwona Jasiuk;Lee, Ho-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.35-45
    • /
    • 2002
  • The stresses of the underfill/chip interface due to thermal loading was studied using the finite element method. At first, the effective properties of underfill for several volume fractions of silica particles were calculated by Mori-Tanaka method for three different material sets, and the parameters of singularity for the bimaterial edge and the bimaterial wedge were calculated. Consequently, the stresses at the underfill/chip interface with volume fraction of silica particles were investigated. Five different geometric models of flip-chip assembly involving two kinds of bimaterial strips and three kinds of three-layer models were considered under the assumption that the underfill is homogeneous. It was assumed that all components of the flip-chip assembly were linear elastic and isotropic, and their properties were temperature independent. The analysis was conducted in the context of the uncoupled plane thermo-elasticity under a plane strain assumption.

  • PDF

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis

  • Lin, Ching-Sheng;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2733-2742
    • /
    • 2020
  • This paper presents an assessment of applicability of the multigroup cross sections generated with Monte Carlo tools to the fast reactor analysis based on transport calculations. 33-group cross section sets were generated for simple one- (1-D) and two-dimensional (2-D) sodium-cooled fast reactor problems using the SERPENT code and applied to deterministic steady-state and depletion calculations. Relative to the reference continuous-energy SERPENT results, with the transport corrected P0 scattering cross section, the k-eff value was overestimated by 506 and 588 pcm for 1-D and 2-D problems, respectively, since anisotropic scattering is important in fast reactors. When the scattering order was increased to P5, the 1-D and 2-D problem errors were increased to 577 and 643 pcm, respectively. A sensitivity and uncertainty analysis with the PERSENT code indicated that these large k-eff errors cannot be attributed to the statistical uncertainties of cross sections and they are likely due to the approximate anisotropic scattering matrices determined by scalar flux weighting. The anisotropic scattering cross sections were alternatively generated using the MC2-3 code and merged with the SERPENT cross sections. The mixed cross section set consistently reduced the errors in k-eff, assembly powers, and nuclide densities. For example, in the 2-D calculation with P3 scattering order, the k-eff error was reduced from 634 pcm to -223 pcm. The maximum error in assembly power was reduced from 2.8% to 0.8% and the RMS error was reduced from 1.4% to 0.4%. The maximum error in the nuclide densities at the end of 12-month depletion that occurred in 237Np was reduced from 3.4% to 1.5%. The errors of the other nuclides are also reduced consistently, for example, from 1.1% to 0.1% for 235U, from 2.2% to 0.7% for 238Pu, and from 1.6% to 0.2% for 241Pu. These results indicate that the scalar flux weighted anisotropic scattering cross sections of SERPENT may not be adequate for application to fast reactors where anisotropic scattering is important.

Application and Comparison of Data Mining Technique to Prevent Metal-Bush Omission (메탈부쉬 누락예방을 위한 데이터마이닝 기법의 적용 및 비교)

  • Sang-Hyun Ko;Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.139-147
    • /
    • 2023
  • The metal bush assembling process is a process of inserting and compressing a metal bush that serves to reduce the occurrence of noise and stable compression in the rotating section. In the metal bush assembly process, the head diameter defect and placement defect of the metal bush occur due to metal bush omission, non-pressing, and poor press-fitting. Among these causes of defects, it is intended to prevent defects due to omission of the metal bush by using signals from sensors attached to the facility. In particular, a metal bush omission is predicted through various data mining techniques using left load cell value, right load cell value, current, and voltage as independent variables. In the case of metal bush omission defect, it is difficult to get defect data, resulting in data imbalance. Data imbalance refers to a case where there is a large difference in the number of data belonging to each class, which can be a problem when performing classification prediction. In order to solve the problem caused by data imbalance, oversampling and composite sampling techniques were applied in this study. In addition, simulated annealing was applied for optimization of parameters related to sampling and hyper-parameters of data mining techniques used for bush omission prediction. In this study, the metal bush omission was predicted using the actual data of M manufacturing company, and the classification performance was examined. All applied techniques showed excellent results, and in particular, the proposed methods, the method of mixing Random Forest and SA, and the method of mixing MLP and SA, showed better results.

Development of a general framework of resonance self-shielding treatment for broad-spectrum reactor lattice physics calculation

  • Jinchao Zhang;Qian Zhang;Hang Zou;Jialei Yu;Wei Cao;Shifu Wu;Shuai Qin;Qiang Zhao;Erez Gilad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4335-4354
    • /
    • 2024
  • Some core designs integrate high-enriched fuel and moderator materials to enhance neutron utilization. This combination results in a broad spectrum within the system, posing challenges in resonance calculation. This paper introduces a general framework to realize resonance self-shielding treatment in broad-spectrum fuel lattice problems. The framework consists of three components. First, a new energy group structure is devised to support resonance calculation in the entire energy range and capture spectral transition and thermalization effects during eigenvalue calculation. Second, the subgroup method based on narrow approximation is selected as a universal method to perform resonance calculation. Finally, transport equations for each fissionable region are solved for neutron flux to collapse the fission spectrum. The proposed method is verified against fast, intermediate, and thermal spectrum pin cell problems and an assembly problem featuring a fast-thermal coupled spectrum. Numerical results affirm the accuracy of the proposed method in handling these scenarios, with eigenvalue errors below 154 pcm for pin cell problems and 106 pcm for the assembly problem. The verification results revealed that the proposed method enables accurate resonance self-shielding treatment for broad-spectrum problems.

Delay in the Cell Cycle by a Single Unattached Kinetochore (방추사와 연결되지 않은 단 하나의 키네토코어가 세포분열의 속도를 늦추는 기전)

  • Kim, Taekyung
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.161-166
    • /
    • 2022
  • Mitosis is a process in which a replicated genome is distributed to two daughter cells, and it is necessary for cell survival and organismal development. During mitosis, the spindle assembly checkpoint (SAC) ensures faithful chromosome segregation by monitoring the kinetochore attachment to the mitotic spindle. Although the SAC mechanism has been extensively studied over the last 30 years, the mechanism by which a single unattached kinetochore activates the SAC remains unclear. The key components of the SAC are Mad1, Mad2, Mad3 (BubR1 in higher eukaryotes), Bub1, Bub3, and Cdc20, which are all required for SAC activation. An essential step for SAC activation is the formation of the Mad2 - Cdc20 complex in the unattached kinetochore, which is kinetically disfavored. Although the mechanism by which Mad2 and Cdc20 are recruited to unattached kinetochores is well-known, it is not clear how they form a complex. Recently, a key mechanism for the formation of the Mad2 - Cdc20 complex has been identified, which is catalyzed by an unattached kinetochore. This supports the evidence that a single unattached kinetochore can activate the SAC signaling. Herein, we discuss the known key mechanism for SAC activation, review the recent studies on SAC, and conclude how their discoveries improved the understanding of mitosis.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

Measurement & analysis of derailment coefficient for korean tilting vehicle (한국형 틸팅차량의 탈선계수 측정 및 분석)

  • Ham, Young-Sam;Seo, Jung-Won;Lee, Dong-Hyong;Kwon, Seok-Jin;Kim, Jae-Chul;Lee, Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1628-1633
    • /
    • 2008
  • Safety of railroad is result of reliability which is received from test & evaluation of system. Railroad system is consisted of various sub system such as vehicle, supply of electric power, signal, communication, rail track construction, operation. To secure safety of railroad, evaluation about parts, assembly, sub system, whole system etc.. that compose railroad is essential. In this paper, I wish to describe for results that analyze korean tilting vehicle's derailment coefficient developed by national research achievement. Result that evaluation korean tilting vehicle's running safety, verified that secure even if speed-up 30 km/h than operating speed of present in curved line.

  • PDF

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

Design Improvement of Composite Door Section Impact Beam by Three-Point Bending Analysis (3점 굽힘 하중 해석을 통한 복합재 도어 임팩트 빔 단면형상 설계개선)

  • Ha, Jung-Chan;Oh, Sung Ha;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2020
  • The currently observed trend in car manufacturing is to increase energy-efficiency by producing lighter cars. This study examines the replacement of particular parts, specifically around the impact beam, with material composites 30% lighter than conventional steel currently used. The shape of the impact beam was determined as the trapezoidal cross-sectional area with central reinforcement, using three-point bending analysis. A prototype was fabricated based on the findings of our study and its performance was evaluated by the three-point bending analysis; 2 ply of aramid applied for its displacement. The performance of the final prototype for the door assembly was evaluated using a side-door strength test, which resulted to measured initial strength of 10.5 KN and intermediate strength of 15.6 KN. This research provides a promising solution for better impact beam manufacturing.