• Title/Summary/Keyword: Korean National Assembly

Search Result 1,349, Processing Time 0.048 seconds

The Guideline Construction for the Manufacturing Process of Working Environment Applying Ergonomic Engineering (인체공학을 적용한 제조공정 작업환경에 대한 가이드라인 구축)

  • Kim, Hwa-Sik;Choi, Seong-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.219-225
    • /
    • 2010
  • A structure of line for producing products is variously changing to be automatic and one-person Cell-Line considering the physical burden for workers in manufacturing industry of electronic goods. However, workers tend to still accuse Work-related Musculoskeletal Disorders (including shoulder, waist, hand, wrist, leg etc.) as a simply repeated work by accelerating of the production speed for productivity improvement in the assembly line. Thus manufacturing engineers in charge of changing and set up newly for an assembly line are necessary to the construct of the guideline on human engineering. Especially. There is no standardized engineering-guide and it is difficult to create the exact work environment because the risk factor analysis and the improvement for assembly line are executed once a year on the current situation. I'd like to reduce the physical burden on workers through the effective improvement of processing by the guideline on working environment fit for a characteristic on manufacturing process when the process is changed or newly installed.

  • PDF

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Evaluation of Thermal Deformation Model for BGA Packages Using Moire Interferometry

  • Joo, Jinwon;Cho, Seungmin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.230-239
    • /
    • 2004
  • A compact model approach of a network of spring elements for elastic loading is presented for the thermal deformation analysis of BGA package assembly. High-sensitivity moire interferometry is applied to evaluate and calibrated the model quantitatively. Two ball grid array (BGA) package assemblies are employed for moire experiments. For a package assembly with a small global bending, the spring model can predict the boundary conditions of the critical solder ball excellently well. For a package assembly with a large global bending, however, the relative displacements determined by spring model agree well with that by experiment after accounting for the rigid-body rotation. The shear strain results of the FEM with the input from the calibrated compact spring model agree reasonably well with the experimental data. The results imply that the combined approach of the compact spring model and the local FE analysis is an effective way to predict strains and stresses and to determine solder damage of the critical solder ball.

Position Control of IPMSM for Missile Assembly Test System(MATS) using Improved Sliding Mode Controller (개선된 슬라이딩모드 제어기를 적용한 Missile Assembly Test System(MATS)용 IPMSM의 위치제어)

  • Cho, Yong-Ju;Shin, Soo-Cheol;Lee, Jung-Hyo;Park, Hyeon-Woo;Lee, Taeck-Kie;Kim, Young-Real;Won, Chung-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.520-521
    • /
    • 2010
  • 본 논문은 군사용 미사일의 조립 후 성능 검증을 위한 Missile Assembly Test System(MATS)용 IPMSM의 위치 제어 방법을 구현하였다. 이를 위하여 슬라이딩 모드 제어기와 PI 제어기를 Membership 함수를 사용하여 혼합한 개선된 위치제어 알고리즘을 제안하였다. 오버슈트가 없고, 외란에 대하여 강인하게 운전 궤적을 추정하는 특성이 뛰어난 슬라이딩 모드 제어의 장점과, 빠른 제어 응답성과 정상상태에서 리플이 적은 PI제어를 적절하게 혼합하였고, 이를 시뮬레이션을 통하여 IPMSM의 위치제어 성능을 검증하였다.

  • PDF

Two-dimensional Assembly of Organically Functionalized Ag Nanoparticles at Air-water Interface (공기와 물이 형성하는 계면에서 발생하는 유기적으로 기능화된 은 나노 입자들의 2차원 조립)

  • Chung, Sungwook
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.125-131
    • /
    • 2017
  • We report organically functionalized Ag nanoparticles spontaneously form two-dimensional (2D) novel superstructures at the air-water interface. Analysis of the superstructures suggests that the 2D assembly of Ag nanoparticles originates from a subtle interplay between characteristic inter-particle interactions that can be readily controlled by changing the sizes of nanoparticle metal core and surfactants. Such structures have potential uses in nanostructured functional materials, catalysis, and device applications.

Influence of Site-Directed Mutagenesis on Protein Assembly and Solubility of Tadpole H-chain Ferritin

  • Kim, Kyung-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.67-70
    • /
    • 1998
  • In order to understand the influence of ferroxidase center on the protein assembly and solubility of tadpole ferrin, three mutant plasmids, pTH58K, pTH61G, and pTHKG were constructed with the aid of site-directed mutagenesis and mutant proteins were produced in Eshcerichia coli. Mutant ferritin H-subunits produced by the cells carrying plasmids pTH58K and pTHKG were active soluble proteins, whereas the mutant obtained from the plasmid pTH61G was soluble only under osmotic stress in the presence obtained from the plasmid pTH61G was soluble only under osmotic stress in the presence of sorbitol and betaine. Especially, the cells carrying pTH61G together with the plasmid pGroESL harboring the molecular chaperone genes produced soluble ferritin. The mutant ferritin H-subunits were all assembled into ferritin-like holoproteins. These mutant ferritns were capable of forming stable iron cores, which means the mutants are able to accumulate iron with such modified ferroxidase sites. Further functional analysis was also made on the individual amino acid residues of ferroxidase center.

  • PDF

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.