• Title/Summary/Keyword: Korean Meteorological Society

Search Result 3,931, Processing Time 0.028 seconds

A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone (기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구)

  • Seung-Hyeop Lee;Mi Eun Park;Hye-Rim Jeon;Mir Park
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Sensitivity of Air Pollutants Dispersion According to the Selection of Meteorological Data - Case of Seongseo Industrial Complex of Daegu - (기상자료에 따른 대기오염확산 민감도평가 -대구성서산업단지에 대한 사례연구-)

  • Park Myung-Hee;Kim Hae-Dong;Park Mi-Young
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2005
  • The importance of atmospheric conditions for the assessment of an air pollution situation has been demonstrated by their influence on the various compartments of an air pollution system, comprising all stages from emission to effects. Especially, air pollutants dispersion phenomenon are very sensitive according to wind data. But the discussions of how to apply representative meteorological data in air pollution dispersion model are not frequent in Korean environmental assessment processes. In this study, we investigated the difference of air pollutants dispersion phenomenon using U.S EPA ISCLT3 model according to applying the different meteorological data observed at two points for Seongseo industrial complex of Daegu. Two points are the spot site of Seongseo industrial complex and Daegu meteorological observatory. The winds speed of the spot site were smaller than those of Daegu meteorological observatory. In the winter season, the differences came to about $64\%$ for the period$(I\;February\;2001\~31\;January\;2002)$. Wind directions were also fairly different at two points. The air pollutants dispersion phenomenon estimated from our numerical experiments were also fairly different owing to the meteorological conditions at two points.

The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia (정지기상위성의 밝기온도로 분석한 2004년 동아시아지역에서 발생한 여름철 대류 시스템의 특성과 그 예측 가능성)

  • Baek, Seon-Kyun;Choi, Young-Jean;Chung, Chu-Yong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2006
  • Convective systems propagate eastward with a persistent pattern in the longitude-time space. The characteristic structure and fluctuation of convective system is helpful in determining its predictability. In this study, convective index (CI) was defined as a difference between GOES-9 window and water vapor channel brightness temperatures following Mosher (2001). Then the temporal-spatial scales and variational characteristics of the summer convective systems in the East Asia were analyzed. It is found that the average moving speed of the convective system is about 14 m/s which is much faster than the low pressure system in the summer. Their average duration is about 12 hours and the average length of the cloud streak is about 750km. These characteristics are consistent with results from other studies. Although the convective systems are forced by the synoptic system and are mostly developed in the eastern edge of the Tibetan Plateau, they have a persistent pattern, i.e., appearance of the maximum intensity of convective systems, as they approach the Korean Peninsula. The consistency of the convective systems, i.e., the eastward propagation, suggests that there exists an intrinsic predictability.

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model (한국형모델의 항공기 관측 온도의 정적 편차 보정 연구)

  • Choi, Dayoung;Ha, Ji-Hyun;Hwang, Yoon-Jeong;Kang, Jeon-ho;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

Characteristics of nocturnal maximum ozone and meteorological relevance in Pusan coastal area (부산 연안역의 야간 고농도 오존 발생 특성과 기상학적 관련성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.287-292
    • /
    • 1999
  • This study was performed to investigate the characteristics of nocturnal maxiumu ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995~1996 in Pusan coastal area. Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high could amount, low sunshine and low radiation were closely related to the main meteorological characteristics occuring the nocturnal maximum concnetration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concnetration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.

  • PDF