• Title/Summary/Keyword: Korean Meteorological Administration (KMA)

Search Result 364, Processing Time 0.024 seconds

Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System (기상청 국지기상예측시스템을 이용한 서울의 도시열섬강도 예측 평가)

  • Byon, Jae-Young;Hong, Seon-Ok;Park, Young-San;Kim, Yeon-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • The purpose of this study was to evaluate the urban heat island (UHI) intensity and the corresponding surface temperature forecast obtained using the local data assimilation and prediction system (LDAPS) of the Korea Meteorological Administration (KMA) against the AWS observation. The observed UHI intensity in Seoul increases during spring and winter, while it decreases during summer. It is found that the diurnal variability of the UHI intensity peaks at dawn but reaches a minimum in the afternoon. The LDAPS overestimates the UHI intensity in summer but underestimates it in winter. In particular, the model tends to overestimate the UHI intensity during the daytime in summer but underestimate it during the nighttime in winter. Moreover, surface temperature errors decrease in summer but increase in winter. The underestimation of the winter UHI intensity appears to be associated with weak forecasting of urban temperature in winter. However, the overestimated summer UHI intensity results from the underestimation of the suburban temperature forecast in summer. In order to improve the predictability of the UHI intensity, an urban canopy model (MORUSES) that considers urban effects was combined with LDAPS and used for simulation for the summer of 2017. The surface temperature forecast for the city was improved significantly by adopting MORUSES, and there were remarkable improvements in urban surface temperature morning forecasts. The urban canopy model produced an improvement effect that weakened the intensity of the UHI, which showed an overestimation during summer.

Application of Land Initialization and its Impact in KMA's Operational Climate Prediction System (현업 기후예측시스템에서의 지면초기화 적용에 따른 예측 민감도 분석)

  • Lim, Somin;Hyun, Yu-Kyung;Ji, Heesook;Lee, Johan
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.

The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements (기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항)

  • Kim, Hyeri;Lee, Johan;Hyun, Yu-Kyung;Hwang, Seung-On
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.341-359
    • /
    • 2021
  • This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018 (현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험)

  • Choi, Dayoung;Hwang, Yoonjeong;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

Characteristics of the Monthly Mean Sea Surface Winds and Wind Waves near the Korean Marginal Seas in the 2002 Year Computed Using MM5/KMA and WAVEWATHC-III model (중규모 기상모델(MM5/KMA)과 3세대 파랑모델(WAVEWATCH-III)로 계산된 한반도 주변해역의 2002년 월평균 해상풍과 파랑 분포 특성)

  • 서장원;장유순
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.262-273
    • /
    • 2003
  • We have analyzed the characteristics of the monthly mean sea surface winds and wind waves near the Korean marginal seas in the 2002 year on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological Administration and the third generation wave model, WAVEWATCH-III. which takes the sea surface winds derived from MM5/KMA model as the initial data. Statistical comparisons have been applied with both the marine meteorological observation buoy and the TOPEX/POSEIDON satellite wave heights data to verify the model results. The correlation coefficients between the models and observation data reach up to about 60-80%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions except for Chilbal-Do located very close to the land. Based on these verification results, the distributions of monthly mean sea surface winds, significant wave heights, wave lengths and wave periods around the Korean marginal seas during 2002 year have been represented.

The History of the Development of Meteorological Related Organizations with the 60th Anniversary of the Korean Meteorological Society - Universities, Korea Meteorological Administration, ROK Air Force Weather Group, and Korea Meteorological Industry Association - (60주년 (사)한국기상학회와 함께한 유관기관의 발전사 - 대학, 기상청, 공군기상단, 한국기상산업협회 -)

  • Jae-Cheol Nam;Myoung-Seok Suh;Eun-Jeong Lee;Jae-Don Hwang;Jun-Young Kwak;Seong-Hyen Ryu;Seung Jun Oh
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.275-295
    • /
    • 2023
  • In Korea, there are four institutions related to atmospheric science: the university's atmospheric science-related department, the Korea Meteorological Administration (KMA), the ROK Air Force Weather Group, and the Meteorological Industry Association. These four institutions have developed while maintaining a deep cooperative relationship with the Korea Meteorological Society (KMS) for the past 60 years. At the university, 6,986 bachelors, 1,595 masters, and 505 doctors, who are experts in meteorology and climate, have been accredited by 2022 at 7 universities related to atmospheric science. The KMA is carrying out national meteorological tasks to protect people's lives and property and foster the meteorological industry. The ROK Air Force Weather Group is in charge of military meteorological work, and is building an artificial intelligence and space weather support system through cooperation with universities, the KMA, and the KMS. Although the Meteorological Industry Association has a short history, its members, sales, and the number of employees are steadily increasing. The KMS greatly contributed to raising the national meteorological service to the level of advanced countries by supporting the development of universities, the KMA, the Air Force Meteorological Agency, and the Meteorological Industry Association.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

The development of 'night sky forecast'(별밤예보) for observatories in Chungbuk province based on KMA UM LDAPS model

  • Kwon, Sun-Beom;Jung, Byung-Woo;Heo, Bok-Haeng;Ha, Chang-Hwan;Yoon, Joh-Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.70.3-70.3
    • /
    • 2017
  • 맑은 날에도 엷은 상층운이나 난류의 방해로 관측 품질이 저해되는 등 천문 분야는 대기환경에 민감하나, 하층 대기 상태에 비중을 두는 동네예보만으로는 천문 분야의 기상정보에 대한 수요를 충족하기에는 한계가 있다. 이에 천문 관측 환경에 보다 특화된 별밤예보를 개발하여 천체 관측 가능성과 천문 관측 자료의 품질을 좌우하는 대기상태를 UM 국지모델 생산자료를 바탕으로 예보하고자 한다. 예보 요소는 하늘상태(운량), 시상(seeing), 투명도, 암도(darkness) 및 대기청명지수, 풍속, 기온, 습도이다. 대기청명지수는 일반인이 관찰하기 좋은지 여부를 한 눈에 알 수 있게 운량과 투명도, 암도를 종합한 지수로 10~100까지 10단계로 제공할 계획이다. 하늘상태와 풍속, 기온, 습도는 $5{\times}5km$격자마다 제공되는 기상청 동네예보에서 천문대와 가장 가까운 격자의 예보치를 추출하였다. 시상은 대기의 난류 정도에 좌우된다. 그러나 충북의 고층기상 관측자료가 없어서, 시상 예보식을 만들기 위해 UM 국지모델에서 제공하는 각 등압면의 기온과 바람벡터로부터 정적 안정도(온위 경도)와 연직 바람시어를 유도한 뒤, 다중회귀분석으로 시상 예보식을 구하였다. 또한 대기청명지수는 청주기상지청에서 관측한 운량과 밤하늘 밝기 자료를 종속변수, 별의 개수를 독립변수로 하는 다중회귀예측식을 구하였다.

  • PDF

Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula (위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발)

  • Jee, Joonbum;Choi, Youngjean;Lee, Kyutae;Zo, Ilsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF