• Title/Summary/Keyword: Korean Journal of Plant Protection

Search Result 1,357, Processing Time 0.029 seconds

Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR

  • Mahmodi, Farshid;Kadir, J.B.;Puteh, A.;Pourdad, S.S.;Nasehi, A.;Soleimani, N.
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.10-24
    • /
    • 2014
  • Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.

사과과수원 점박이응애의 약제 저항성 비교 분석 (Comparison and Analysis of Insecticide Resistance of Two Spotted Spider Mite (Tetranychus urficae) among Apple Orchards)

  • 이시우;김광호;박창규;박홍현;이관석;최병렬;이상계
    • 농약과학회지
    • /
    • 제14권3호
    • /
    • pp.266-271
    • /
    • 2010
  • 6종류의 살충제(유기인계인 monocrotophos, 항생물질계인 milbemectin, 피라졸계인 tebufenpyrad, 아유산에스텔계인 propargite, 유기염소계인 dicofol, 피레스계인 fenpropathrin)를 선발하여 사과원의 점박이응애에 대한 반수치사농도 조사하였다. 점박이응애는 충주, 군위, 소보 지역 과수원에서 채집하였다. Monocrotophos과 fenpropathrin은 저항성 발달로 인하여 효과가 없었으며, milbemectin, tebufenpyrad, dicofol, propargite는 점박이응애에 대해 효과를 보이고 있었다. 과수원 간 약제저항성 분포패턴은 같은 경향을 보이나 각 과수원 계통의 점박이응애는 서로 다른 군집에 속하였다.

Molecular Characterization of an Isolate of Bean Common Mosaic Virus First Identified in Gardenia Using Metatranscriptome and Small RNA Sequencing

  • Zhong-Tian Xu;Hai-Tao Weng;Jian-Ping Chen;Chuan-Xi Zhang;Jun-Min Li;Yi-Yuan Li
    • The Plant Pathology Journal
    • /
    • 제40권1호
    • /
    • pp.73-82
    • /
    • 2024
  • Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMVgardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.

Physiological and Biochemical Changes in Lucerne (Medicago sativa) Plants Infected with 'Candidatus Phytoplasma australasia'-Related Strain (16SrII-D Subgroup)

  • Ayvaci, Humeyra;Guldur, M. Ertugrul;Dikilitas, Murat
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.146-158
    • /
    • 2022
  • Changes in physiological and biochemical patterns in lucerne plants caused by the presence of 'Candidatus Phytoplasma australasia', which is one of the significant pathogens causing yield losses in lucerne plants, were investigated. Significant differences were evident in total chlorophyll, chlorophyll a, chlorophyll b, and protein amounts between 'Ca. Phytoplasma australasia'-positive and negative lucerne plants. Stress-related metabolites such as phenol, malondialdehyde, and proline accumulations in 'Ca. Phytoplasma australasia'-positive plants were remarkably higher than those of phytoplasma-negative plants. As a response to disease attack, phytoplasma-positive plants exhibited higher antioxidant enzymes (peroxidase and catalase) and nonenzymatic metabolite responses such as jasmonic and salicylic acids. We state that partial disease responses were revealed for the first time to breed resistant lucerne lines infected by 'Ca. Phytoplasma australasia'.

Development and Evaluation of Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Tylenchulus semipenetrans Using DNA Extracted from Soil

  • Song, Zhi-Qiang;Cheng, Ju-E;Cheng, Fei-Xue;Zhang, De-Yong;Liu, Yong
    • The Plant Pathology Journal
    • /
    • 제33권2호
    • /
    • pp.184-192
    • /
    • 2017
  • Tylenchulus semipenetrans is an important and widespread plant-parasitic nematode of citrus worldwide and can cause citrus slow decline disease leading to significant reduction in tree growth and yield. Rapid and accurate detection of T. semipenetrans in soil is important for the disease forecasting and management. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed to detect T. semipenetrans using DNA extracted from soil. A set of five primers was designed from the internal transcribed spacer region (ITS1) of rDNA, and was highly specific to T. semipenetrans. The LAMP reaction was performed at $63^{\circ}C$ for 60 min. The LAMP product was visualized directly in one reaction tube by adding SYBR Green I. The detection limit of the LAMP assay was $10^{-2}J2/0.5g$ of soil, which was 10 times more sensitive than conventional PCR ($10^{-1}J2/0.5g$ of soil). Examination of 24 field soil samples revealed that the LAMP assay was applicable to a range of soils infested naturally with T. semipenetrans, and the total assay time was less than 2.5 h. These results indicated that the developed LAMP assay is a simple, rapid, sensitive, specific and accurate technique for detection of T. semipenetrans in field soil, and contributes to the effective management of citrus slow decline disease.

Rapid Analysis of Tetraconazole Residues in Fruits and Vegetables using Ethyl Acetate Extraction and Gas Chromatography-tandem Mass Spectrometry

  • Xu, Jun;Dong, Fengshou;Liu, Xingang;Li, Jing;Li, Yuanbo;Shan, Weili;Zheng, Yongquan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4265-4269
    • /
    • 2011
  • A method based on ethyl acetate extraction and gas chromatography with tandem mass spectrometry was developed for determining tetraconazole residues in fruits and vegetables. A 10 g homogenized sample was mixed with 10 mL ethyl acetate, shaken vigorously for 3 min, stored at $-20^{\circ}C$ for 15 min, and then vortexed vigorously for 1 min; 1 g NaCl and 4 g anhydrous $MgSO_4$ were added. The clean-up was carried out by applying dispersive solid-phase with 150 mg $MgSO_4$and 50 mg primary secondary amine. Three precursor product ion transitions for tetraconazole were measured and evaluated to provide the maximum degree of confidence. Average recoveries in fruits and vegetables at three levels (0.005, 0.05 and 0.5 mg/kg) ranged from 85.53% to 110.66% with relative standard deviations ($RSD_r$) from 1.3% to 17.5%. The LODs ranged from 0.002 to 0.004 ${\mu}g$/kg, and LOQs ranged from 0.006 to 0.012 ${\mu}g$/kg. This method was also applied to determine tetraconazole residue in cucumber dissipation experiment under field conditions. The half-lives of tetraconazole in cucumber were in the range of 2.1-3.1 days.

Microbial Community Dysbiosis and Functional Gene Content Changes in Apple Flowers due to Fire Blight

  • Kong, Hyun Gi;Ham, Hyeonheui;Lee, Mi-Hyun;Park, Dong Suk;Lee, Yong Hwan
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.404-412
    • /
    • 2021
  • Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.

A Real-Time PCR Assay for the Quantitative Detection of Ralstonia solanacearum in Horticultural Soil and Plant Tissues

  • Chen, Yun;Zhang, Wen-Zhi;Liu, Xin;Ma, Zhong-Hua;Li, Bo;Allen, Caitilyn;Guo, Jian-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.193-201
    • /
    • 2010
  • A specific and rapid real-time PCR assay for detecting Ralstonia solanacearum in horticultural soil and plant tissues was developed in this study. The specific primers RSF/RSR were designed based on the upstream region of the UDP-3-O-acyl-GlcNAc deacetylase gene from R. solanacearum, and a PCR product of 159 bp was amplified specifically from 28 strains of R. solanacearum, which represent all genetically diverse AluI types and all 6 biovars, but not from any other nontarget species. The detection limit of $10^2\;CFU/g$ tomato stem and horticultural soil was achieved in this real-time PCR assay. The high sensitivity and specificity observed with field samples as well as with artificially infected samples suggested that this method might be a useful tool for detection and quantification of R. solanacearum in precise forecast and diagnosis.