• Title/Summary/Keyword: Korean Geodetic Datum

Search Result 57, Processing Time 0.023 seconds

인천항검조소 자료의 중간평가

  • 최병호;노상준
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.124-128
    • /
    • 1996
  • 인천항의 검조소의 검조기록은 우리나라의 수치측지기준(vertical geodetic datum)을 제공하는 중요한 자료이다. 본 연구에서는 최(1990)가 62년부터의 14년 자료를 처리, 발표한 것에 이어 83년에 다시 계속적인 분석을 보고하였지만 92년까지의 검조기록을 재분석하여 보고코저 한다. 분석에서 61년 이전의 자료는 하계의 DST(Daylight Saving Time)적용에 따른 자료가 보정되어 있지 못하므로 사용하지 않았으며 73, 74년 역시 검조소 이전에 따른 년자료의 연장이 완전하지 않아 취하지 않았다. (중략)

  • PDF

Accuracy of the Loran-C Fix in Cheju Areas (제주지역에서의 Loran-C 위치의 정도)

  • Kim, Gwang-Hong;Sim, Hyeong-Il;Jang, Chung-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1985
  • This paper was conducted for the purpose of evaluating the accuracy of the observed time difference in Loran-C when the ground wave propagated on the surface included both land sea. The time difference of X and Y station in North East Pacific Chain GRI 5970 was measured at 25 points in Cheju areas. The results obtained are as follows: (1) The errors of time difference for M-X pair are increased when the Loran-C wave propagates above 500m heights of Hanla mountain on propagation path between the observed point and master or X, Y slave station. (2) The errors of time difference for M-X pair are able to decrease by way of correction for the propagation velocity and the geodetic datum, but errors of the time difference for M-Y pair very irregularly because irregular terrain include in propagation path from X station and propagation path from Y station is twice longer than X station. (3) It is confirmed that accuracy of Loran-C fix can elevate by the way of all correction for a geodetic datum transformation, the propagation velocity with refractive index of radio wave and the propagation velocity over land.

  • PDF

Examination of KGD2002 Results of the National Geodetic Network Adjustment (국가기준점망의 KGD2002성과산출과 현지검측에 의한 분석)

  • Lee, Young-Jin;Choi, Yun-Soo;Koh, Hyoung-Kon;Hwang, Byoung-Chul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.465-474
    • /
    • 2007
  • This paper focuses on examining and evaluating results of the Korean Geodetic Datum 2002 (KGD2002) of the national horizontal network adjustment. To this end, 137 geodetic control points were independently observed by GPS technology. After processing all the observations, their results were compared with ones derived by the national network adjustment which was recently performed to determine new KGD 2002 coordinate sets over the national geodetic control points. The comparisons results showed that RMSE was ${\pm}2.7cm$ and ${pm}6.5cm$ in horizontal and vertical component in the case of GPS network, whereas RMSE was ${\pm}3.0cm$, in horizontal component in the case of EDM network.

Accuracy Comparison as World Geodetic Datum Transformation of 1/1000 Digital Map (1/1,000 수치지형도의 세계측지계 변환에 따른 정확도 비교)

  • Yun, Seok-Jin;Park, Joung-Hyun;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2009
  • According as standard of measurement is changed to world geodetic system by surveying law revision, we need to transform previous 1/1,000 digital maps as a standards of world geodetic system. And, we should acquire standard strategy to minimize confusion and error by conversion of geodetic surveying standards. Thus, conversion of digital maps must be transformed efficiently and consistently according to notice of relevant standard. As common point, we have used 1/1,000 digital map and local geodetic system coordinates and world geodetic system coordinates that had been used in UIS business of Pusan city and, make a analysis of distortion quantity using KASM Trans Ver 2.2. As the result of distortion quantity calculation about all Pusan city, numbers of area that error is over 0.05m are 35 in case of X(N) and 43 in case of Y(E). Because some business section have especially much error, we divided into 3 areas, that was A,B,C, and analyzed. As a result of analysis, errors of more than 0.05m are occurred only 1 X(E) in the B area and 1 X(N) and 1 Y(E) in the C area. In conclusion, We think It is a good method that we consider a distortion quantity and divide a region, and transfer to world geodetic system for large area like Pusan city.

A Study on the Computation of Deflection of the Vertical Referred to World Geodetic System by Astrogeodetic Data (세계측지계상에서 천문측량데이터를 이용한 연직선편차 계산에 관한 연구)

  • Lee, Suk-Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.47-53
    • /
    • 2007
  • Astronomic surveying has been regarded as an important method for absolute positioning of geodetic datum in each countries under the local geodetic reference system. The purposes of this study are to determine astrogeodetic geoidal heights referred to Bessel ellipsoid and to determine deflection of the vertical and geoidal heights referred to GRS80 of World Geodetic System by astronomic surveying data which have been surveyed after 1970 in Korea. The results show that $\xi$ component of the deflection of the vertical distribute from -5.725" to 8.005" and $\eta$ component distribute from -14.917" to 6.2" and astrogeodrtic geoidal heights distribute from 23 m to 27 m in the study area. Also, we could see that GRS80 was more optimal ellipsoid than Bessel 1841 ellipsoid to Korea through comparing both astrogeotic geoidal heights referred to GRS80 and Bessel 1841 ellipsoid.

  • PDF

The Korean Geodetic Network Adjustments for EDM Area (국가기준점 망조정에 관한 연구 - EDM 관측지역)

  • Yang, Hyo-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Kim, Dong-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • According to the Korean datum change to a world geodetic system, the EDM area should be readjusted to provide consistent product over the country. The data set for EDM area is extracted from the previous KTN1987 DB and checked for the moved markers in XY network adjustment which provides quality verification. Then, EDM data set for the seven areas are rebuilt for the adjustment. Since the data is still based on the old datum, the coordinates of the data are transformed by applying the coordinate transformation parameters. Here, the transformation parameters, which were determined for the conversion of 1:50,000 topographic maps by NGII, were used. For each EDM point, the geoidal height from EGM96 model is applied to obtain the ellipsoidal height based on the GRS80. The measured distance projected onto GRS80 is adjusted using BL network adjustment by fixing 2nd order or 3rd order GPS control points. The results from the readjustment show the minimum standard error of 1.37" and the maximum standard error of 2.13". Considering the measurement accuracy of EDM (1.6" corresponding to about 2cm) and GPS position for fixed points (2cm), this result is considered to be reasonable and it is good for the practical use.

ADVANTAGE OF USING FREE NETWORK ADJUSTMENT TECHNIQUE IN THE CRUSTAL MOVEMENT MONITORING GEODETIC NETWORKS

  • AhmedM.Hamdy;Jo,Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • There are numerous adjustment techniques that deal with the adjustment of geodetic networks but the least squares adjustment is the most common one. During the network adjustment procedure two techniques can be used, the free network adjustment technique and the constrained network adjustment technique. In order to determine the optimum technique for adjusting the geodetic networks, which used for the geodynamical purposes, data from two different geodetic networks "Sinai geodetic network, Egypt, and HGN network, South Korea" had been examined. The used networks had a different configuration and located in different areas with different seismic activity. The results show that both techniques have a high accuracy and no remarkable differences in terms of RMS. On the contrary, the resulted coordinates shows that the constrained network adjustment technique not only cause a remarkable distortion in the station final coordinates but also if the fixed points that define the datum parameters are changed different solutions for the coordinates will be determined. This distortion affect not only in the determination of point displacement but also in the estimation of the deformation parameters, which play a significant role in the geodynamical interpretation of results. Comparing the results which obtained from both techniques with the widely known geodynamical models of the area reviles that the free network adjustment technique results are clearly match with these models, while those obtained from the constrained technique didn’t match at all. By considering the results it seams to be that the free network adjustment technique is the optimum technique, which can be used for the geodetic network adjustment.

  • PDF

The Coordinate Transformation of Digital Geological Map in accordance with the World Geodetic System (A Case Study of Chungju and Hwanggang-ri Sheets using ArcToolbox) (수치지질도의 세계측지계 좌표변환 (ArcToolbox를 이용한 충주 및 황강리 도폭의 사례))

  • Oh, Hyun-Joo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.537-543
    • /
    • 2015
  • In Korea, the use of world geodetic system(WGS) has been mandated in year 2010. Accordingly, the national geographic information institute(NGIS) provides the digital maps according to the WGS. Nevertheless, most of the digital geological maps are still based on the Tokyo Datum(TD). Therefore, users should conduct 2D/3D geological spatial analysis after converting the coordinates of digital geological maps to WGS. The conversion process is often tedious and troublesome for certain users. Therefore, in this study, the method to transform coordinate from TD to WGS using ArcToolbox is introduced for users not familiar with the process. For a better appreciation, the Chungju and Hwanggang-ri digital sheets of 1:50,000 scale was chosen as an example. Here, Chungju and Hwanggang-ri sheets were defined based on the TD-central origin and TD-east origin, respectively. The two sheets were merged after the transformation of TD-east origin of Hwanggang-ri to the TD-central origin, and eventually transformed to WGS-central origin. The merged map was found to match exactly with the digital map(Daeso 367041). The problem of coordinate determination in previous digital geological maps was solved effectively. The proposed method is believed to be helpful to 2D/3D geological spatial analysis of various geological thematic maps.

Improved National Datum Transformation Parameters of South Korea (국가좌표계 변환요소의 개선)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • In this paper, the historical coordinates data of origin SUWON are reviewed and determination procedures are explained with the three dimensional geocentric coordinates of ITRF94 that is determined using VLBI observations. Also three translation parameters are calculated on the origin point. The national transformation parameters between the Korean geodetic system and Korean Terrestrial Reference Frame 1994(KTRF94) system, are determined using least square methods with weigted parameter constraints. The results of transformation show that one set of parameters are applicable to fixing of a position for GPS relative positioning processing and to adjusting of a network for three dimensional geocentric coordinates(KTRF94) computing.

  • PDF

Geoid Models Referred to the Bessel Ellipsoid of South Korea (벳셀타원체 기준의 남한지역 지오이드 모델(KGM95))

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The geoidal heights of a country may be computed from astrogedetic, gravimetric or satellite data. In this paper, the geoid models to the Bessel ellipsoid(KGM95-A) have been determined by the astrogedetic method, which is surface fitting techniques using deflections of the vertical and geoid height constraints. Transformation equations and the gravimetric geocentric geoid(KGM93-C) were applied to obtain the geoid height referred to the Tokyo Datum of the Korean geodetic network, the comparison of the astrogedetic results and discussions of the geoid information were added.

  • PDF