• Title/Summary/Keyword: Korean Eojeol

Search Result 55, Processing Time 0.021 seconds

A Korean Part-of-Speech Tagger using Simplified Eojeol-based unit (단순화된 어절을 단위로 하는 한국어 품사 태거)

  • Lee, Eui-Hyeon;Kim, Young-Gil;Shin, Jaehun;Kwon, Hong-Seok;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.268-272
    • /
    • 2016
  • 영어권 언어가 어절 단위로 품사를 부여하는 반면, 한국어는 굴절이 많이 일어나는 교착어로서 데이터부족 문제를 피하기 위해 형태소 단위로 품사를 부여한다. 이러한 구조적 차이 안에서 한국어에 적합한 품사 태깅 단위는 지속적으로 논의되어 왔으며 지금까지 음절, 형태소, 어절, 구가 제안되었다. 본 연구는 어절 단위로 태깅함으로써 야기되는 복잡한 품사 태그와 데이터부족 문제를 해소하기 위해 어절에서 주요 실질 형태소와 주요 형식 형태소만을 뽑아 새로운 어절을 생성하고, 생성된 단순한 어절에 대해 CRF 태깅을 수행하였다. 실험결과 평가 말뭉치에서 미등록 어절 등장 비율은 9.22%에서 5.63%로 38.95% 감소시키고, 어절단위 정확도를 85.04%에서 90.81%로 6.79% 향상시켰다.

  • PDF

A comparison of phonological error patterns in the single word and spontaneous speech of children with speech sound disorders (말소리장애 아동의 단어와 자발화 문맥의 음운오류패턴 비교)

  • Park, kayeon;Kim, Soo-Jin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This study was aim to compare the phonological error patterns and PCC(Percentage of Correct Consonants) derived from the single word and spontaneous speech contexts of the speech sound disorders with unknown origin(SSD). The present study suggest that the development phonological error patterns and non-developmental error patterns of the target children, in according to speech context. The subjects were 15 children with SSD up to the age of 5 from 3 years of age. This research use 37 words of APAC(Assessment of Phonology & Articulation for Children) in the single word context and 100 eojeol in the spontaneous speech context. There was no difference of PCC between the single word and the spontaneous speech contexts. Significantly different developmental phonological error patterns between the single word and the spontaneous speech contexts were syllable deletion, word-medial onset deletion, liquid deletion, gliding, affrication, fricative other error, tensing, regressive assimilation. Significantly different non-developmental phonological error patterns were backing, addtion of phoneme, aspirating. The study showed that there was no difference of PCC between elicited single word and spontaneous conversational context. And there were some different phonological error patterns derived from the two contexts of the speech sound disorders. The more important interventions target is the error patterns of the spontaneous speech contexts for the immediate generalization and rising overall intelligibility.

A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification (한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구)

  • Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.681-691
    • /
    • 2008
  • In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.

Recognition of Korean Implicit Citation Sentences Using Machine Learning with Lexical Features (어휘 자질 기반 기계 학습을 사용한 한국어 암묵 인용문 인식)

  • Kang, In-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5565-5570
    • /
    • 2015
  • Implicit citation sentence recognition is to locate citation sentences which lacks explicit citation markers, from articles' full-text. State-of-the-art approaches exploit word ngrams, clue words, researcher's surnames, mentions of previous methods, and distance relative to nearest explicit citation sentences, etc., reaching over 50% performance. However, most previous works have been conducted on English. As for Korean, a rule-based method using positive/negative clue patterns was reported to attain the performance of 42%, requiring further improvement. This study attempted to learn to recognize implicit citation sentences from Korean literatures' full-text using Korean lexical features. Different lexical feature units such as Eojeol, morpheme, and Eumjeol were evaluated to determine proper lexical features for Korean implicit citation sentence recognition. In addition, lexical features were combined with the position features representing backward/forward proximities to explicit citation sentences, improving the performance up to over 50%.

Segmenting and Classifying Korean Words based on Syllables Using Instance-Based Learning (사례기반 학습을 이용한 음절기반 한국어 단어 분리 및 범주 결정)

  • Kim, Jae-Hoon;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.47-56
    • /
    • 2003
  • Korean delimits words by white-space like English, but words In Korean Is a little different in structure from those in English. Words in English generally consist of one word, but those in Korean are composed of one word and/or morpheme or more. Because of this difference, a word between white-spaces is called an Eojeol in Korean. We propose a method for segmenting and classifying Korean words and/or morphemes based on syllables using an instance-based learning. In this paper, elements of feature sets for the instance-based learning are one previous syllable, one current syllable, two next syllables, a final consonant of the current syllable, and two previous categories. Our method shows more than 97% of the F-measure of word segmentation using ETRI corpus and KAIST corpus.

The characteristics of eye-movement in Korean sentence reading: cluster length, word frequency, and landing position effects (우리 문장 읽기에서 안구 운동의 특성: 어절 길이, 단어 빈도 및 착지점 관련 효과)

  • Koh, Sung-Ryongng;Yoon, Nak-Yeong
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.325-350
    • /
    • 2007
  • This study investigated global and local characteristics of eye movement while 16 college students read 48 easy Korean sentences. It was found that readers lusted for about 225ms at the word cluster(eojeol), made a forward saccade of about 3.6 characters to the next word, skipped short and high-frequent words about 25% during the first-pass reading, and regressed backward at 19%. There were also individual differences in readers' pattern of fixation and saccade. In addition, the effects of word cluster length and word frequency and the effects related to landing position were examined. The eyes landed on the center of a word cluster more frequently than on the boundaries. When the eyes landed at the boundaries, the eyes fixated the word cluster again more frequently. The word clusters with high-frequency words were read faster than those with low-frequency words.

  • PDF

Phase-based Model Using Web Documents for Korean Unknown Word Recognition (웹문서를 이용한 단계별 한국어 미등록어 인식 모델)

  • Park, So-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1898-1904
    • /
    • 2009
  • Recently, real documents such as newspapers as well as blogs include newly coined words such as "Wikipedia". However, most previous information processing technologies cannot deal with these newly coined words because they construct their dictionaries based on materials acquired during system development. In this paper, we propose a model to automatically recognize Korean unknown words excluded from the previously constructed dictionary. The proposed model consists of an unknown noun recognition phase based on full text analysis, an unknown verb recognition phase based on web document frequency, and an unknown noun recognition phase based on web document frequency. The proposed model can recognize accurately the unknown words occurred once and again in a document by the full text analysis. Also, the proposed model can recognize broadly the unknown words occurred once in the document by using web documents. Besides, the proposed model fan recognize both a Korean unknown verb, which syllables can be changed from its base form by inflection, and a Korean unknown noun, which syllables are not changed in any eojeol. Experimental results shows that the proposed model improves precision 1.01% and recall 8.50% as compared with a previous model.

A Research on Module Arrangement of Korean Spelling Corrector to Optimize Correction Rate (교정률 최적화를 위한 한국어 철자교정기의 모듈 배열)

  • Yun Keun-Soo;Kwon Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.366-377
    • /
    • 2005
  • We find a module may that takes optimal correction rate of Korean spelling corrector. If there are a lot of module numbers of spelling corrector, it is difficult to calculate optimal correction rate of spelling corrector because permutation of N-modules is N!. This Korean spelling corrector consists of 19 modules. It is impossible to arrange 19 modules actually and the correction rate is various according to input data. We found the range of correction rate using parallel processing between modules and the optimal correction rate using sequential processing of modules. Input data that are used in an experiment is 753,191 eojeol's sets that happen in newspaper publishing company during several years. About this error set, theoretical maximum correction rate of spelling corrector is $97.28\%$ (732,764/753,191). But we got the optimal correction rate $96.62\%$ (727,750/733,191). This optimal correction rate is almost near to $99.31\%$ (727,750/732,764) of the maximum correction rate.

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF

Korean Unknown-noun Recognition using Strings Following Nouns in Words (명사후문자열을 이용한 미등록어 인식)

  • Park, Ki-Tak;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Unknown nouns which are not in a dictionary make problems not only morphological analysis but also almost all natural language processing area. This paper describes a recognition method for Korean unknown nouns using strings following nouns such as postposition, suffix and postposition, suffix and eomi, etc. We collect and sort words including nouns from documents and divide a word including unknown noun into two parts, candidate noun and string following the noun, by finding same prefix morphemes from more than two unknown words. We use information of strings following nouns extracted from Sejong corpus and decide unknown noun finally. We obtain 99.64% precision and 99.46% recall for unknown nouns occurred more than two forms in news of two portal sites.