Annual Conference on Human and Language Technology
/
2016.10a
/
pp.268-272
/
2016
영어권 언어가 어절 단위로 품사를 부여하는 반면, 한국어는 굴절이 많이 일어나는 교착어로서 데이터부족 문제를 피하기 위해 형태소 단위로 품사를 부여한다. 이러한 구조적 차이 안에서 한국어에 적합한 품사 태깅 단위는 지속적으로 논의되어 왔으며 지금까지 음절, 형태소, 어절, 구가 제안되었다. 본 연구는 어절 단위로 태깅함으로써 야기되는 복잡한 품사 태그와 데이터부족 문제를 해소하기 위해 어절에서 주요 실질 형태소와 주요 형식 형태소만을 뽑아 새로운 어절을 생성하고, 생성된 단순한 어절에 대해 CRF 태깅을 수행하였다. 실험결과 평가 말뭉치에서 미등록 어절 등장 비율은 9.22%에서 5.63%로 38.95% 감소시키고, 어절단위 정확도를 85.04%에서 90.81%로 6.79% 향상시켰다.
This study was aim to compare the phonological error patterns and PCC(Percentage of Correct Consonants) derived from the single word and spontaneous speech contexts of the speech sound disorders with unknown origin(SSD). The present study suggest that the development phonological error patterns and non-developmental error patterns of the target children, in according to speech context. The subjects were 15 children with SSD up to the age of 5 from 3 years of age. This research use 37 words of APAC(Assessment of Phonology & Articulation for Children) in the single word context and 100 eojeol in the spontaneous speech context. There was no difference of PCC between the single word and the spontaneous speech contexts. Significantly different developmental phonological error patterns between the single word and the spontaneous speech contexts were syllable deletion, word-medial onset deletion, liquid deletion, gliding, affrication, fricative other error, tensing, regressive assimilation. Significantly different non-developmental phonological error patterns were backing, addtion of phoneme, aspirating. The study showed that there was no difference of PCC between elicited single word and spontaneous conversational context. And there were some different phonological error patterns derived from the two contexts of the speech sound disorders. The more important interventions target is the error patterns of the spontaneous speech contexts for the immediate generalization and rising overall intelligibility.
Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
Journal of KIISE:Software and Applications
/
v.35
no.11
/
pp.681-691
/
2008
In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.8
/
pp.5565-5570
/
2015
Implicit citation sentence recognition is to locate citation sentences which lacks explicit citation markers, from articles' full-text. State-of-the-art approaches exploit word ngrams, clue words, researcher's surnames, mentions of previous methods, and distance relative to nearest explicit citation sentences, etc., reaching over 50% performance. However, most previous works have been conducted on English. As for Korean, a rule-based method using positive/negative clue patterns was reported to attain the performance of 42%, requiring further improvement. This study attempted to learn to recognize implicit citation sentences from Korean literatures' full-text using Korean lexical features. Different lexical feature units such as Eojeol, morpheme, and Eumjeol were evaluated to determine proper lexical features for Korean implicit citation sentence recognition. In addition, lexical features were combined with the position features representing backward/forward proximities to explicit citation sentences, improving the performance up to over 50%.
Korean delimits words by white-space like English, but words In Korean Is a little different in structure from those in English. Words in English generally consist of one word, but those in Korean are composed of one word and/or morpheme or more. Because of this difference, a word between white-spaces is called an Eojeol in Korean. We propose a method for segmenting and classifying Korean words and/or morphemes based on syllables using an instance-based learning. In this paper, elements of feature sets for the instance-based learning are one previous syllable, one current syllable, two next syllables, a final consonant of the current syllable, and two previous categories. Our method shows more than 97% of the F-measure of word segmentation using ETRI corpus and KAIST corpus.
This study investigated global and local characteristics of eye movement while 16 college students read 48 easy Korean sentences. It was found that readers lusted for about 225ms at the word cluster(eojeol), made a forward saccade of about 3.6 characters to the next word, skipped short and high-frequent words about 25% during the first-pass reading, and regressed backward at 19%. There were also individual differences in readers' pattern of fixation and saccade. In addition, the effects of word cluster length and word frequency and the effects related to landing position were examined. The eyes landed on the center of a word cluster more frequently than on the boundaries. When the eyes landed at the boundaries, the eyes fixated the word cluster again more frequently. The word clusters with high-frequency words were read faster than those with low-frequency words.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.9
/
pp.1898-1904
/
2009
Recently, real documents such as newspapers as well as blogs include newly coined words such as "Wikipedia". However, most previous information processing technologies cannot deal with these newly coined words because they construct their dictionaries based on materials acquired during system development. In this paper, we propose a model to automatically recognize Korean unknown words excluded from the previously constructed dictionary. The proposed model consists of an unknown noun recognition phase based on full text analysis, an unknown verb recognition phase based on web document frequency, and an unknown noun recognition phase based on web document frequency. The proposed model can recognize accurately the unknown words occurred once and again in a document by the full text analysis. Also, the proposed model can recognize broadly the unknown words occurred once in the document by using web documents. Besides, the proposed model fan recognize both a Korean unknown verb, which syllables can be changed from its base form by inflection, and a Korean unknown noun, which syllables are not changed in any eojeol. Experimental results shows that the proposed model improves precision 1.01% and recall 8.50% as compared with a previous model.
We find a module may that takes optimal correction rate of Korean spelling corrector. If there are a lot of module numbers of spelling corrector, it is difficult to calculate optimal correction rate of spelling corrector because permutation of N-modules is N!. This Korean spelling corrector consists of 19 modules. It is impossible to arrange 19 modules actually and the correction rate is various according to input data. We found the range of correction rate using parallel processing between modules and the optimal correction rate using sequential processing of modules. Input data that are used in an experiment is 753,191 eojeol's sets that happen in newspaper publishing company during several years. About this error set, theoretical maximum correction rate of spelling corrector is $97.28\%$ (732,764/753,191). But we got the optimal correction rate $96.62\%$ (727,750/733,191). This optimal correction rate is almost near to $99.31\%$ (727,750/732,764) of the maximum correction rate.
This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.
Unknown nouns which are not in a dictionary make problems not only morphological analysis but also almost all natural language processing area. This paper describes a recognition method for Korean unknown nouns using strings following nouns such as postposition, suffix and postposition, suffix and eomi, etc. We collect and sort words including nouns from documents and divide a word including unknown noun into two parts, candidate noun and string following the noun, by finding same prefix morphemes from more than two unknown words. We use information of strings following nouns extracted from Sejong corpus and decide unknown noun finally. We obtain 99.64% precision and 99.46% recall for unknown nouns occurred more than two forms in news of two portal sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.