Proceedings of the Korean Society for Cognitive Science Conference
/
2002.05a
/
pp.46-50
/
2002
인간의 지식 표상 규명에 대한 연구는 인간을 대상으로 연구하는 심리학에서뿐만 아니라 인간의 지능을 컴퓨터를 이용하여 구현하고자 하는 인공지능 학문에서도 오래 전부터 매우 중요한 화두가 되고 있다. 특히 인간의 지식 중 언어 지식에 대한 연구는 인간의 언어처리 과정 및 현상을 규명하고 이해하고자 하는 심리언어학에서뿐만 아니라 인간의 언어를 컴퓨터를 이용하여 처리하고자 하는 전산언어학 연구에 있어서도 매우 중요하다. 본 논문은 피험자를 대상으로 한 어절 재인 시 관찰되었던 언어 현상을 설명할 수 있는 시뮬레이션 모델과 이에 근거한 심성어휘집내에서의 한국어 어절의 표상 구조를 제안한다.
Park, Young-Keun;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun Ah
Journal of KIISE
/
v.44
no.10
/
pp.1087-1093
/
2017
Educating foreigners in Korean language is attracting increasing attention with the growing number of foreigners who want to learn Korean or want to reside in Korea. Existing spell checkers mostly focus on native Korean speakers, so they are inappropriate for foreigners. In this paper, we propose a correction method for the Korean language that reflects the contextual characteristics of Korean and writing characteristics of foreigners. Our method can extract frequently used expressions by Koreans by constructing syllable reverse-index for eojeol bi-gram extracted from corpus as correction candidates, and generate ranked Korean corrections for foreigners with upgraded edit distance calculation. Our system provides a user interface based on keyboard hooking, so a user can easily use the correction system along with other applications. Our system improves the detection rate for foreign language users by about 45% compared to other systems in foreign language writing environments. This will help foreign users to judge and correct their own writing errors.
This study is directed toward the design of a hybrid algorithm for syllable-based Korean POS tagging. Previous syllable-based works on Korean POS tagging have relied on a sequence labeling method and mostly used only a machine learning method. We present a new algorithm integrating a machine learning method and a pre-analyzed dictionary. We used a Sejong tagged corpus for training and evaluation. While the machine learning engine achieved eojeol precision of 0.964, the proposed hybrid engine achieved eojeol precision of 0.990. In a Quiz domain test, the machine learning engine and the proposed hybrid engine obtained 0.961 and 0.972, respectively. This result indicates our method to be effective for Korean POS tagging.
This study investigated global and local characteristics of eye movement while 30 college students read easy and difficult Korean texts. It was found that readers who read the difficult text fixated longer for about 217ms and made shorter saccades of about 3.7 characters while readers who read the easy one fixated for about 190ms and made saccades of about 4.8 characters. Single fixation times and gaze durations in the difficult text were longer than those in the easy one(227ms vs. 195ms; 266ms vs. 210ms). In both easy and difficult texts, the effects of word frequency and eojeol length were found. In addition, the differences in fixation times according to word frequency and length were larger in the difficult text.
WSD(word sense disambiguation) is one of the most difficult problems in Korean information processing. The Bayesian model that used semantic information, extracted from definition corpus(1 million POS-tagged eojeol, Korean dictionary definitions), resulted in accuracy of 72.08% (nouns 78.12%, verbs 62.45%). This paper proposes the statistical WSD model using NPH(New Prior Probability of Homonym sense) and distance weights. We select 46 homonyms(30 nouns, 16 verbs) occurred high frequency in definition corpus, and then we experiment the model on 47,977 contexts from ‘21C Sejong Corpus’(3.5 million POS-tagged eojeol). The WSD model using NPH improves on accuracy to average 1.70% and the one using NPH and distance weights improves to 2.01%.
Context-sensitive spelling-error correction methods are largely classified into rule-based methods and statistical data-based methods, the latter of which is often preferred in research. Statistical error correction methods consider context-sensitive spelling error problems as word-sense disambiguation problems. The method divides a vocabulary pair, for correction, which consists of a correction target vocabulary and a replacement candidate vocabulary, according to the context. The present paper proposes a method that integrates a word-phrase n-gram model into a conventional model in order to improve the performance of the probability model by using a correction vocabulary pair, which was a result of a previous study performed by this research team. The integrated model suggested in this paper includes a method used to interpolate the probability of a sentence calculated through each model and a method used to apply the models, when both methods are sequentially applied. Both aforementioned types of integrated models exhibit relatively high accuracy and reproducibility when compared to conventional models or to a model that uses only an n-gram.
This paper proposes a new method to determine the recognition units for large vocabulary continuous speech recognition (LVCSR) in Korean by applying unsupervised segmentation and merging. In the proposed method, a text sentence is segmented into morphemes and position information is added to morphemes. Then submorpheme units are obtained by splitting the morpheme units through the maximization of posterior probability terms. The posterior probability terms are computed from the morpheme frequency distribution, the morpheme length distribution, and the morpheme frequency-of-frequency distribution. Finally, the recognition units are obtained by sequentially merging the submorpheme pair with the highest frequency. Computer experiments are conducted using a Korean LVCSR with a 100k word vocabulary and a trigram language model obtained by a 300 million eojeol (word phrase) corpus. The proposed method is shown to reduce the out-of-vocabulary rate to 1.8% and reduce the syllable error rate relatively by 14.0%.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.279-284
/
2008
본 연구에서는 어절패턴을 이용하는 새로운 방식의 한국어 형태소 분석기 KGuru-MA에 대해서 설명한다. KGuru-MA는 품사 부착 말뭉치에서 개방어를 생략하여 어절 패턴을 반자동으로 학습하여 어절 패턴 사전과 형태소 확률 정보 사전을 구성한 후, 이 사전을 이용하여 형태소를 분석한다. 본 형태소 분석기는 어절패턴을 사용하여 형태소 분석하기 때문에 기존 형태소 분석기에 존재하는 접속검사 과정이 생략된다. 또한, 형태소 분석 과정이 기존의 형태소 분석기에 비해 단순하여 기초 자연언어 처리 시스템이 가지는 강건성을 보장한다. 본 연구는 "21세기 세종기획 3차년도 말뭉치"를 이용한 실험 결과, 기존 형태소 분석기 못지 않은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.43-48
/
2019
본 논문에서는 한국어 챗봇에서의 문장 분류 시스템에 대하여 서술한다. 텍스트를 입력으로 받는 한국어 챗봇의 경우, 때때로 입력 문장에 오타나 띄어쓰기 오류 등이 포함될 수 있고, 이러한 오류는 잘못된 형태소 분석 결과로 이어지게 된다. 잘못된 형태소 분석 결과로 인한 문장 분류의 오류를 줄이기 위하여, 본 논문에서는 새로운 통합 어절 임베딩 방식을 제안한다. 통합 어절 임베딩 방식의 단점을 보완하고 성능을 향상시키기 위하여, 두 가지의 말뭉치 노이즈 추가 방법이 별도로 제안되었다. 실험 결과에 따르면, 본 논문에서 제안된 시스템은 오류를 포함한 한국어 문장 분류 문제에서 기존 시스템과 비교하여 문장 단위 정확률 기준으로 23 %p의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.327-331
/
1997
본 논문에서는 기계번역과 의미분석의 전단계로서의 구문분석에 대하여 논한다. 의존 문법에 기반을 둔 구문분석의 효율성을 위하여 한국어 어절에 대한 새로운 해석을 시도하며, 이를 기반으로 한국어 의존관계 파서의 새로운 기본 단위(SynN: Syntactic Node)를 제시한다. 또한 새로운 기본 단위를 구문분석 과정에 적용하는 방법과 그 결과를 보인다. 마지막으로, 구현된 구문분석기를 중간언어 방식 시스템인 한-중 기계번역 시스템에 채용하여 그 성능을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.