• 제목/요약/키워드: Korean Commercial Code

검색결과 1,191건 처리시간 0.03초

풍력발전시스템의 유연체 다물체 동역학 시뮬레이션 프로그램 개발 (Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code)

  • 송진섭;임채환;남용윤;배대성
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.50-57
    • /
    • 2011
  • A wind turbine simulation program for the coupled dynamics of aerodynamics, elasticity, multi-body dynamics and controls of turbine is newly developed by combining an aero-elastic code and a multi-body dynamics code. The aero-elastic code, based on the blade momentum theory and generalized dynamic wake theory, is developed by NREL(National Renewable Energy Laboratory, USA). The multi-body dynamics code is commercial one which is capable of accounting for geometric nonlinearity and twist deflection. A turbulent wind load case is simulated for the NREL 5-MW baseline wind turbine model by the developed program and FAST. As a result, the two results agree well enough to verify the reliability of the developed program.

새집증후군 저감대책을 위한 실내 오염물질 확산 해석 코드 개발 (DEVELOPMENT OF A COMPUTER CODE FOR PREDICTION OF INDOOR POLLUTANT DISPERSION)

  • 전현준;양경수;최춘범
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.508-516
    • /
    • 2010
  • An efficient code has been developed to predict dispersion of indoor air pollutants The computing capability of the code has been compared with that of a commercial code inn a benchmark test. After that, the code has been employed to compute dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome (SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and scalar fields. LES has bee regarded as an academic tool, but the newly-developed code reveals a possibility of application of LES to practical problems, especially dispersion of indoor pollutants.

  • PDF

새집증후군 저감대책을 위한 실내 오염물질 확산 해석 코드 개발 및 적용 (Development and Application of a Computer Code for Prediction of Indoor Pollutant Dispersion)

  • 전현준;양경수;최춘범
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.735-744
    • /
    • 2010
  • An efficient code has been developed to predict dispersion of indoor air pollutants. The computing capability of the code has been compared with that of a commercial code in a benchmark test. After that, the code has been employed to compute dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome(SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and concentration fields. LES has been regarded as an academic tool, but the newly-developed code reveals a possibility of application of LES to practical problems, especially dispersion of indoor pollutants.

Experimental and Numerical Study on Slamming Impact

  • Kwon, Sun Hong;Yang, Young Jun;Lee, Hee Sung
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2013
  • This paper presents the results of experimental and numerical research on the slamming phenomenon. Two experimental techniques were proposed in this study. The traditional free drop tests were carried out. However, the free drop tests done in this study using an LM guide showed excellent repeatability, unlike those of other researchers. The coefficients of variation for the drop test done in this experiment were less than 0.1. The other experimental technique proposed in this study was a novel concept that used a pneumatic cylinder. The pneumatic cylinder could accelerate the specimen over a very short distance from the free surface. As a result, high rates of repeatability were achieved. In the numerical study, the development of in-house code and utilization of commercial code were carried out. The in-house code developed was based on the boundary element method. It is a potential code. This was mostly applied to the computation of the wedge entry problem. The commercial code utilized was FLUENT. Most of the previous slamming research was done under the assumption of a constant body velocity all through the impact process, which is not realistic at all. However, the interaction of a fluid and body were taken into account by employing a user-defined function in this study. The experimental and numerical results were compared. The in-house code based on BEM showed better agreement than that of the FLUENT computation when it cames to the wedge computation. However, the FLUENT proved that it could deal with a very complex geometry while BEM could not. The proposed experimental and numerical procedures were shown to be very promising tools for dealing with slamming problems.

디버터의 열유동 및 열응력 해석 1 (Analysis of Heat Flow and Thermal Stress for Divertors)

  • 이상윤;김홍배
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.238-245
    • /
    • 1999
  • For the optimal design of plasma facing components of a fusion reactor, thorough understanding of thermal behavior of high heat. nux components are required. The purpose of this research is to investigate the characteristics of heat flow and thermal stress in divertors which are exposed to high heat load varing with time and space-Numerical simulations of heat now and thermal stress for three types of diverter are performed using finite volume method and finite element method. Respectly, commercial FLUENT code are used in the heat flow simulation, and maximum surface temperature, temperature distribution and cooling rate are calculated. Commercial ABQUS code are used for calculating temperature distribution. thermal stress, strain and displacement. Through this computer simulation. design data for cooling system and Structural provided.

  • PDF

상용 CFD코드를 이용한 횡류홴 공력소음 특성 해석 (Analysis of the aeroacoustic characteristics of cross-flow fan using commercial CFD code)

  • Jeon, Wan-Ho;Gi, Jeong-Mun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.334.1-334
    • /
    • 2002
  • In this study, a cross-flow fan system used in indoor unit of the split-type air conditioner is analyzed by computational simulation. A commercial CFD code - Fluent - is used to calculate the performance and its unsteady flow characteristics. The unsteady incompressible Wavier-Stokes equations are solved using a sliding mesh technique on the interface between rotating fan region and the outside. The acoustic pressure is calculated by using Ffowcs-Williams and Hawkings equation. (omitted)

  • PDF

상용 유한요소해석 프로그램을 이용한 축류송풍기의 내진해석 (Seismic Analysis of an Axial Blower Using a Commercial FEM Code)

  • 정진태;임형빈;김강성;허진욱
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A seismic analysis is one of crucial design procedures of an axial blower used in nuclear power Plants. The blower should be operated even in ar emergency such as an earthquake. The blower should be designed in order to stand against an earthquake. For the seismic analysis, Ive perform the modal analysis and then evaluate the required response spectrum (PRS) from the given floor response spectrum (FRS). A finite element model of the blower is established by using a commercial FEM code of ANSYS. After the finite element modeling. the natural frequencies. the mode shapes and the participation factors are obtained from the modal analysis. The PRS is acquired by a numerical approach on the basis of the principle of mode superposition. We verify the structura safety of the axial blower and confirm the validity of the present seismic analysis results.

디젤엔진의 공기청정기내 압력 및 유동분포에 관한 연구 (Study of Pressure and Flow in the Air-Cleaner of Commercial Vehicle)

  • 류명석;구영곤;김경훈;맹주성
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.47-53
    • /
    • 1997
  • The importance of intake system can not be overstressed in the recent heavy duty commercial vehicle design. The basic requirements of intake system are to have less flow resistance and better air cleaning performance which have direct effects on the performance and service life of engine. In order to improve the performance of engine intake system, the flow phenomena in the intake system should be fully understood. With readily availble CFD code, the numerical analysis becomes the more reliable tools for flow optimization in recent design work. In this research, flow field in the intake system was analyzed by STAR-CD, the 3-D computational fluid dynamics code. Especially, the flow inside of air cleaner was thoroughly analyzed. Pressure distribution and velocity profile in the air cleaner and intake duct was obtained. Having the dust seperated from incoming air at the expense of less pressure drop is the ultimate goal for the research.

  • PDF

초음속 연마가공 노즐의 성능개선에 관한 연구 (Improvement of the Performance of the Supersonic Abrasive Blasting Nozzle)

  • 곽지영;전익준;박세은;이열
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.9-15
    • /
    • 2016
  • The dynamics of gas-particle flow from a supersonic abrasive blasting nozzle have been studied by 1-D analytical calculation, including wall friction effects inside the nozzle. The developed code in the present study shows a satisfactory agreement with the other study's results. By utilizing the code, the redesign and optimization of the inner contour of a commercial abrasive blasting nozzle were carried out, and it was found that the redesigned nozzle in the present study can produce faster particle velocities at the nozzle exit by up to 22% compared with the original commercial nozzle.

비축대칭 부품의 단조금형 설계용 자동화 프로그램 개발 (A Development of Automation Program for Forging Die Design of Non-Axisymmetric Parts)

  • 권순홍;최종웅
    • 한국산업융합학회 논문집
    • /
    • 제5권1호
    • /
    • pp.11-19
    • /
    • 2002
  • This study described computer aided die design system for cold forging of non-axisymmetric parts such as gears and splines. To design the cold forging die, an integrated approach based on a rule-base system and commercial F. E. code were adopted. This system is implemented on the personal computer and its environment is a commercial CAD package named as Auto CAD. The system includes four modules. In the initial data input module, variables which are necessary to design of die are inputted by user and die material are selected from the database according to the variables. In the analysis and redesign module, stress distribution acting on the designed die is analyzed by commercial FEM code NISA II with elastic mode. If die failure predicted, the designed die would modified in four ways to prevent die failure in both states of stress free and pressurizing. The developed system provides useful date and powerful capabilities for die design of non-axisymmetric parts.

  • PDF