• Title/Summary/Keyword: Korean Civil Code

Search Result 410, Processing Time 0.027 seconds

Evaluation of Liquefaction Triggering for the Pohang Area Based on SPT and CPT Tests (SPT와 CPT 지반조사결과에 기초한 포항지역 액상화 위험도 평가)

  • Kim, Yeon-Jun;Ko, Kil-Wan;Kim, Byung-Min;Park, Du-Hee;Kim, Ki-Seog;Han, Jin-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.57-71
    • /
    • 2020
  • Liquefaction-induced sand boils were observed during the Pohang earthquake (Moment magnitude, 5.4) on November 15, 2017, specifically in the region of agricultural fields and park areas near the epicenter. This was recorded as the first observed liquefaction phenomenon in Korea. This paper analyzes liquefaction potentials at the key sites at Pohang area. The simplified methods and current design standard were used to evaluate the occurrence of liquefaction. The seismic demand was estimated based on the NGA-WEST2 ground motion prediction equations (GMPEs). The liquefaction resistance of the ground was determined using the in-situ tests: standard penetration test (SPT) and cone penetration test (CPT). The liquefaction potentials were quantified by liquefaction potential index (LPI), which were compared with those from the previous studies.

Estimation of Pile Shaft Resistances with Elastic Modulus Depending on Strain (변형률에 따른 탄성계수 변화를 고려한 말뚝의 주면지지력 산정)

  • Kim, Seok-Jung;Kim, Sung-Heon;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.933-943
    • /
    • 2009
  • Axial loads and shaft resistances can be calculated by load transfer analysis using strain data with load level. In load transfer analysis, the elastic modulus of concrete is a one of the most important parameters to consider. The elastic modulus, $E_{50}$, suggested by ACI (American Concrete Institute), has been commonly used. However, elastic modulus of concrete shows nonlinear stress-strain characteristic, so nonlinearity should be considered in load transfer analysis. In this paper, a load transfer analysis was performed by using data obtained from bi-directional pile load tests for four cases of drilled shafts. For consideration of nonlinearity, elastic modulus was calculated by both the Fellenius method and the nonlinear method, assuming the stress-strain relation of concrete to be a quadratic function, and then, the calculated elastic modulus was applied to the estimation of shaft resistance. The calculated shaft resistances were compared with the result obtained using the constant elastic modulus of ACI code. It was found that the f-w curves are similar to each method, and elastic modulus and shaft resistances decreased as strain increased. Moreover, shaft resistances estimated from elastic modulus considering nonlinearity were 5~15% different than those obtained using the constant elastic modulus.

  • PDF

Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine (사보니우스 소형풍력터빈 수치해석용 격자시스템 평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JEON, SEOK-YUN;YOON, JOON-YONG;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3 (압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교)

  • Lee, Dong-Kyun;Lee, Do-Kyung;Oh, Jun-Hwan;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.168-175
    • /
    • 2022
  • With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

Structure Design System of Soundproofing Wall Using Green Stone (조경블록(그린스톤)을 이용한 방음벽 구조설계시스템)

  • Han, Jung-Geun;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This study aims at the new design system development of landscape architecture structures, as soundproof wall using reinforced soil block. This structures, that is new soundproof wall system, have to be maintained stability on acting critical wind load, which is combined exist soundproof wall system and soundproof wall system using environmental green stone block. To the harmony of this system, the post block, so-called landscape block or cast block, is manufactured. It's possible to stand of the post bearing system combined with post-pile and post block. Through the comparison with a serious code for the acting wind load on the soundproof wall, the reasonable wind load could be calculated. Also, the mechanical stability on the green stone block was checked by the Lab. tests based on the UBC (Uniformed Building Code). Because the critical height of soundproof wall system using green stone generally was restricted, the new system demands to combination of the exist system and the new system. For the stability analysis of them, the utility program, SAP2000, was used. And, a semi-auto program on the design system of the new soundproof wall using green stone was developed, which can be easily use because of the simplification.

  • PDF

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

Ground-motion prediction equation for South Korea based on recent earthquake records

  • Jeong, Ki-Hyun;Lee, Han-Seon
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2018
  • A ground-motion prediction equation (GMPE) for the Korean Peninsula, especially for South Korea, is developed based on synthetic ground motions generated using a ground motion model derived from instrumental records from 11 recent earthquakes of $M_L$>4.5 in Korea, including the Gyeongju earthquake of Sept. 12. 2016 ($M_L$5.8). PSAs of one standard deviation from the developed GMPE with $M_W$ 6.5 at hypocentral distances of 15 km and 25 km are compared to the design spectrum (soil condition, $S_B$) of the Korean Building Code 2016 (KBC), indicating that: (1) PSAs at short periods around 0.2 sec can be 1.5 times larger than the corresponding KBC PSA, and (2) SD's at periods longer than 2 sec do not exceed 8 cm. Although this comparison of the design spectrum with those of the GMPE developed herein intends to identify the characteristics of the scenario earthquake in a lower-seismicity region such as South Korea, it does not mean that the current design spectrum should be modified accordingly. To develop a design spectrum compatible with the Korean Peninsula, more systematic research using probabilistic seismic hazard analysis is necessary in the future.

Transportation Modeling of Conservative Pollutant in a River with Weirs - The Nakdong River Case (수중보를 고려한 하천에서 보존성 오염물질의 이송특성 분석 - 낙동강을 중심으로)

  • Lee, Jungwoo;Bae, Sunim;Lee, Dong-Ryul;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.821-827
    • /
    • 2014
  • The 4major river project has caused changes in flow and water quality patterns in major rivers in Korea including the Nakdong River where several toxicant release accidents have had occurred. Three dimensional hydrodynamic model, the Environmental Fluid Dynamics Code (EFDC), was applied to evaluate the effect of geomorphological change of the river on the advection and dispersion patterns of a conservative toxic pollutant. A hypothetical scenario was developed using historical data by assuming a toxic release from an upstream location. If there is a toxic release at the Gumi Industrial Complex, the toxic material would be detected after 2.22 and 9.83 days at Chilgok and Gangjung weir, respectively, in the new river system. It was estimated that they took at least 12 times longer than those with the river conditions before the project. Effect of relocation of intake towers for Daegu Metro City to upstream of Gumi City was also evaluated using the developed modeling system. It was observed that hydraulic residence time would be increased due to decreased flow rate and thus due to lowered water level. However, peak concentration differences were found to be about 2% lower in both places due to increased dispersion effect after the relocation.

A Study on the Applicability of Bearing Capacity Formulas of Driven Pile by Comparison with the Results of Static Loading Tests (정재하시험 결과를 통한 타입말뚝 지지력 공식의 타당성 분석)

  • Chun, Byung-Sik;Lee, Seung-Beom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.544-551
    • /
    • 2004
  • Piles are structural elements made of steel, concrete or timber, and utilize as pile foundation which is one of deep foundations. Driven pile among them, which drives pile into the ground, is fast-constructable, less expensive and it supplies much bearing capacity. For these reasons, its demand is steady. In this study, by selecting the cases which reached ultimate failure during in-situ static loading tests, bearing capacities acquired from these tests were compared with those computed by existing theories and formula. As the results of the analysis, ultimate bearing capacity computed by theoretic formula were less or similar to those of test results in most cases, but lower ground water level and more dense layer where end of piles were reached remarkably high bearing capacity in theoretical methods. ${\beta}-method$ and Korean structure foundation design standard were sensitive to ground physical properties. Meyerhof metbod and API code were relatively independent from site condition.

  • PDF

Optimal Groundwater Development Estimation to Prevent Saltwater Intrusion in Western Jeju Island (제주 서부 지역 해수침투 방지를 위한 적정 양수량 산정기법)

  • Kim, Min-Gyu;Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.527-535
    • /
    • 2018
  • Agricultural activities of western Jeju island has suffered from saltwater intrusion seasonally. Objectives of this study are to prove the occurrence of saltwater intrusion in the coastal aquifer and to consider a management plan using MODFLOW-family code SEAWAT model. Model results show that the saltwater-freshwater interface intrudes inland only a few meters and that upconing phenomenon is rather the cause of the severe disaster of the agricultural water contamination. This study selected Gosan area as a representative site to estimate optimal groundwater development regulation against upconing by seasonal pumping for agriculture. The suggested optimal groundwater development estimation method considers the groundwater levels of representative monitoring wells for regulatory alarms.