• Title/Summary/Keyword: Korea wave

Search Result 8,034, Processing Time 0.03 seconds

Study on Freak Wave Characteristics and Approximation of Wave Spectrum in Uljin Sea Area (울진해역의 Freak wave 특성과 스펙트럼 근사에 대한 연구)

  • Ryu, Hwang-Jin;Hong, Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.8-13
    • /
    • 2012
  • This paper investigates the statistical properties of waves in the sea area of Uljin, which is located in the East Sea area of Korea. The wave data were measured using AWAC (Acoustic Wave and Current Meter), which was installed at a 16-m water depth from November 2010 to March 2011. The wave data acquisition rate, Hmax, monthly mean Hs, Tz, Tp, and wave direction are summarized. The distributions of Hs and Tz were analyzed using the Hs-Tz scatter diagrams. The measurement wave data were analyzed to investigate freak wave characteristics. By comparing the wave spectrum using the measurement wave data with the wave spectrum obtained by varying the JONSWAP wave spectrum, it was possible to approximate the wave spectrum shape at the Uljin Sea area.

Analysis of Relative Wave Elevation Around Semi-submersible Platform Through Model Test: Focusing on Comparison of Wave Probe Characteristics

  • Nam, Hyun-Seung;Park, Dong-Min;Cho, Seok Kyu;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, as the offshore structures are operated in the deep-sea oil fields, interest in the analysis of relative wave elevation around platforms is increased. In this study, it is examined how the analysis results differ depending on the characteristics of the wave probe when interpreting the relative wave elevation in the model test. First, by conducting the wave probe comparison experiment in the two-dimensional wave tank, it is confirmed how the measured values differ according to the type of wave probe for the same physical phenomenon. Two types of wave probe are selected, the resistance type and the capacitance type, and the causes of the difference in measured values is studied. After that, the model test of the semi-submersible platform is conducted to investigate the relative wave elevation. Relative wave elevation is measured with the wave probes used in the wave probe comparison experiment and analyzed to estimate the asymmetric factor and the extreme upwell. The results between the two types of wave probes are compared, and qualitative study for the cause of the difference is conducted by photographing the physical phenomenon using a high-speed camera. Through the above study, it is confirmed that the capacitance type wave probe shows a larger measured value than the resistance type under the breaking-wave condition, and the same results are obtained for the asymmetric factor and the extreme upwell. These results is thought to be due to the difference in the measurement principle between wave probes, which is whether or not they measured water bubbles. This implies that the model test should be conducted using appropriate wave probes by considering the physical phenomenon to be analyzed.

Evolution of Wave Profiles in Directional Breaking Generated by Serpent-type Wavemaker (서펜트형 조파기에 의해 생성된 다방향 쇄파의 파형 전개)

  • Hong, Key-Yong;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.264-269
    • /
    • 2002
  • The wave profiles of directional breaking waves are investigated experimentally in a directional wave basin. The directional breaking waves are generated by component wave focusing both in direction and frequency based on constant wave steepness and constant wave amplitude spectrum models. the profile parameters of wave crest steepness and asymmetry are adapted to analyze the evolution of breaking ware characteristics in a view of focusing efficiency. The generated breaking waves are classified into the incipient, single and multi breaking waves.

  • PDF

Wave Properties in the Sea Area of Mara-do in ′98 and ′99 (′98-′99 마라도해역에서의 파랑의 특성)

  • 안용호;정진영;류황진;김도영
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.108-116
    • /
    • 2001
  • In this paper, statistical properties of waves in the sea area of Mara-do, Korea are examined based on 1998-1999's wave data from a directional wave buoy which is located in Mara-do. Wave data aquisition rate, monthly maximium, minimum and mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated.

  • PDF

On statistical Properties of the Extreme Waves (극한파의 통계적 특성에 대한 연구)

  • Ryu, Hwang-Jin;Kim, Do-Yong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.309-316
    • /
    • 2003
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-years return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

Stream Function Wave Theory에 관한 고찰

  • 여운광;편종근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1983.07a
    • /
    • pp.78-79
    • /
    • 1983
  • It is well known that small amplitude wave theory, a first approximation to the complete theoretical description of wave behavior, yields a maximum investment in mathematical endeavor. But, if the wave amplitude is large, the small amplitude considerations are not valid, and finite amplitude wave theory which retains higher-order terms to obtain an accurate representation of the wave motion is numercal theory. The Stream function wave theory, one of the numerical methods, was developed by Dean for use with asymmetric measured wave profiles and with symmetric theoretical wave profiles. Dalrymple later improved the comjputational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave heigh and to a zero mean free surface displacement resulted. This paper introduces in details the Dean and Darlymple Stream Function Method in case of the symmetric theoretical wave, because in design purposes, wave height and wave period are given.

  • PDF

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

The Analysis of Dynamic Behavior of Concrete Gravity Dam (중력식콘크리트댐의 동적거동분석)

  • 임정열;이종욱;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.155-162
    • /
    • 2001
  • In this study, it was performed that the seismic response analysis using long period earthquake wave and short period earthquake wave on dynamic behavior of concrete gravity dam. The results showed that if the same magnitude earthquake waves acted on concrete dam, the maximum displacement and stress at dam crest of long period wave(0funato wave) were about 30 % larger than those of short period wave(Hachinohe wave). And the response acceleration of dam crest was amplified about 5 times in long period earthquake wave and about 3 times in short period earthquake wave.

  • PDF

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

WAVE Packet Transmission Method for Railroad WAVE Communication (철도 WAVE 통신을 위한 WAVE 패킷 전송방법)

  • Cho, Bong-Kwan;Ryu, Sang-Hwan;Kim, Keum-Bee;Kim, Ronny Yongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6604-6610
    • /
    • 2015
  • In this paper, an efficient Wireless Access in Vehicular Environment (WAVE) packet transmission scheme for railroad communication is proposed. WAVE communication is a wireless local area network (WLAN) based communication and it is developed to be suitable for vehicular communication. There has been a lot of study on WAVE's applicability to Intelligent Transport System (ITS). As one of main transportation methods, by using WAVE, quality of railroad communication including WLAN based Communication Based Train Control (CBTC) can be enhanced and variety of railroad communication systems can be integrated into WAVE. However, there are technical challenges to adopt WAVE in railroad communications. For the simplest single-PHY WAVE, time division alternation of 50ms between Control Channel (CCH) and Service Channel (SCH) is required. Since there are delay sensitive railroad traffic types, alternation operation of CCH and SCH may cause performance degradation. In this paper, after identifying a couple of problems based on detailed analysis, a novel packet transmission scheme under railroad environment is proposed. In order to verify if the proposed scheme meets the requirement of railroad communication, WAVE transmission is mathematically modeled.