• 제목/요약/키워드: Korea composite stock price index (KOSPI)

검색결과 42건 처리시간 0.029초

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network (인공신경망을 이용한 한국 종합주가지수의 방향성 예측)

  • 박종엽;한인구
    • Journal of Intelligence and Information Systems
    • /
    • 제1권2호
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

System Dynamics Approach for the Forecasting KOSPI (시스템다이내믹스를 활용한 종합 주가지수 예측 모델 연구)

  • Cho, Kang-Rae;Jeong, Kwan-Yong
    • Korean System Dynamics Review
    • /
    • 제8권2호
    • /
    • pp.175-190
    • /
    • 2007
  • Stock market volatility largely depends on firms' value and growth opportunities. However, with the globalization of world economy, the effect of the synchronization in major countries is gaining its importance. Also, domestically, the business cycle and cash market of the country are additional factors needed to be considered. The main purpose of this research is to attest the application and usefulness of System Dynamics as a general stock market forecasting tool. Throughout this research, System Dynamics suggests a conceptual model for forecasting a KOSPI(Korea Composite Stock Price Index), taking the factors of the composite stock price indexes in traditional researches. In conclusion of this research, System Dynamics was proved to bean appropriate model for forecasting the volatility and direction of a stock market as a whole. With its timely adaptability, System Dynamic overcomes the limit of traditional statistic models.

  • PDF

Change of Stock Earning Rate on Korean Quality Award Recipients - The comparison between KQA Index and Baldrige Index-

  • Suh, Yung-Ho;Lee, Hyun-Soo
    • International Journal of Quality Innovation
    • /
    • 제1권1호
    • /
    • pp.106-120
    • /
    • 2000
  • The purpose of this research is to understand the effects of Quality Management Award on stock prices movement and to examine the comparative advantages of quality award system in Korea and the U.S. This study compares the performances of QM Award companies in the stock market with those of the market index in both countries. We develop Korean Quality Award Index(KQA Index) based on the Baldrige Index of NIST in the U.S. We inspect three studies. Study 1 tests if the performances of MB Award winners and S&P500 index have a difference in the stock market. Study 2 tests if the performances of KQA winners and KOSPI(Korean Composite Stock Price Index) have a difference in the stock market. Study 3 tests if the performances of KQA winners and MB Award winners have a difference in the stock market. From the empirical tests, the performances of KQA winners are superior to those of KOSPI and the performances of MB Award winners are superior to those of S&P500 and the performances of MB Award winners are superior to those of KQA winners.

  • PDF

Cascade-Correlation Network를 이용한 종합주가지수 예측

  • 지원철;박시우;신현정;신홍섭
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.745-748
    • /
    • 1996
  • Korea Composite Stock Price Index (KOSPI) was predicted using Cascade Correlation Network (CCN) model. CCN was suggested, by Fahlman and Lebiere [1990], to overcome the limitations of backpropagation algorithm such as step size problem and moving target problem. To test the applicability of CCN as a function approximator to the stock price movements, CCN was used as a tool for univariate time series analysis. The fitting and forecasting performance fo CCN on the KOSPI was compared with those of Multi-Layer Perceptron (MLP).

  • PDF

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제45권5호
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

Relation Analysis Between REITs and Construction Business, Real Estate Business, and Stock Market (리츠와 건설경기, 부동산경기, 주식시장과의 관계 분석)

  • Lee, Chi-Joo;Lee, Ghang
    • Korean Journal of Construction Engineering and Management
    • /
    • 제11권5호
    • /
    • pp.41-52
    • /
    • 2010
  • Even though REITs (Real Estate Investment Trusts) are listed on the stock market, REITs have characteristics that allow them to invest in real estate and financing for real estate development. Therefore REITs is related with stock market and construction business and real estate business. Using time-series analysis, this study analyzed REITs in relation to construction businesses, real estate businesses, and the stock market, and derived influence factor of REITs. We used the VAR (vector auto-regression) and the VECM (vector error correction model) for the time-series analysis. This study classified three steps in the analysis. First, we performed the time-series analysis between REITs and construction KOSPI(The Korea composite stock price index) and the result showed that construction KOSPI influenced REITs. Second, we analyzed the relationship between REITs and construction commencement area of the coincident construction composite index, office index and housing price index in real estate business indexes. REITs and the housing price index influence each other, although there is no causal relationship between them. Third, we analyzed the relationship between REITs and the construction permit area of the leading construction composite index. The construction permit area is influenced by REITs, although there is no causal relationship between these two indexes, REITs influenced the stock market and housing price indexes and the construction permit area of the leading composite index in construction businesses, but exerted a relatively small influence in construction starts coincident with the composite office indexes in this study.

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • 제9권6호
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

Volatility spillover between the Korean KOSPI and the Hong Kong HSI stock markets

  • Baek, Eun-Ah;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제23권3호
    • /
    • pp.203-213
    • /
    • 2016
  • We investigate volatility spillover aspects of realized volatilities (RVs) for the log returns of the Korea Composite Stock Price Index (KOSPI) and the Hang Seng Index (HSI) from 2009-2013. For all RVs, significant long memories and asymmetries are identified. For a model selection, we consider three commonly used time series models as well as three models that incorporate long memory and asymmetry. Taking into account of goodness-of-fit and forecasting ability, Leverage heteroskedastic autoregressive realized volatility (LHAR) model is selected for the given data. The LHAR model finds significant decompositions of the spillover effect from the HSI to the KOSPI into moderate negative daily spillover, positive weekly spillover and positive monthly spillover, and from the KOSPI to the HSI into substantial negative weekly spillover and positive monthly spillover. An interesting result from the analysis is that the daily volatility spillover from the HSI to the KOSPI is significant versus the insignificant daily volatility spillover of the KOSPI to HSI. The daily volatility in Hong Kong affects next day volatility in Korea but the daily volatility in Korea does not affect next day volatility in Hong Kong.