• Title/Summary/Keyword: Korea Space Plane

Search Result 361, Processing Time 0.024 seconds

Pharyngeal airway analysis of different craniofacial morphology using cone-beam computed tomography (CBCT) (Cone beam CT를 이용한 안면골격형태에 따른 상기도 공간 분석)

  • Kim, Yong-Il;Kim, Seong-Sik;Son, Woo-Sung;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.39 no.3
    • /
    • pp.136-145
    • /
    • 2009
  • Objective: CBCT has become popular for orthodontic diagnosis and treatment planning in recent times. The 3D pharyngeal airway space needs to be analysed using a 3D diagnostic tool. The aim of this study was to analyse the pharyngeal airway of different craniofacial morphology using CBCT. Methods: The sample compromised 102 subjects divided into 3 groups (Class I, II, III) and 6 subgroups according to normal or vertical craniofacial patterns. All samples had CBCT (VCT, Vatech, Seoul, Korea) taken for orthodontic treatment. The pharyngeal airway was assessed according to the reference planes: aa plane (the most anterior point on the anterior arch of atlas), $CV_2$ plane, and $CV_3$ plane (most infero-anterior point on the body of the second & third cervical vertebra). The intergroup comparison was performed with one-way ANOVA and duncan test as a second step. Results: The results showed the pharyngeal airway and anteroposterior width of group 2 (Class II) in aa plane, $CV_2$ plane, $CV_3$ plane were significant narrower than in group 3 (Class III). There was no significant difference between vertical and normal craniofacial patterns except for the anteroposterior pharyngeal width of Group 1 (Class I) in aa plane. Conclusions: Subjects with Class II patterns have a significantly narrower pharyngeal airway than those with Class III. However there was no difference in pharyngeal airway between vertical and normal craniofacial morphology.

Manual Scaling of Ionograms Measured at Jeju (33.4°N, 126.3°E) Throughout 2012

  • Jeong, Se-Heon;Kim, Yong Ha;Kim, Ki-nam
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • The ionosphere has been monitored by ionosondes for over five decades since the 1960s in Korea. An ionosonde typically produces an ionogram that displays radio echoes in the frequency-range plane. The trace of echoes in the plane can be read either manually or automatically to derive useful ionospheric parameters such as foF2 (peak frequency of the F2 layer) and hmF2 (peak height of the F2 layer). Monitoring of the ionosphere should be routinely performed in a given time cadence, and thus, automatic scaling of an ionogram is generally executed to obtain ionospheric parameters. However, an auto-scaling program can generate undesirable results that significantly misrepresent the ionosphere. In order to verify the degree of misrepresentation by an auto-scaling program, we performed manual scaling of all 35,136 ionograms measured at Jeju ($33.43^{\circ}N$, $126.30^{\circ}E$) throughout 2012. We compared our manually scaled parameters (foF2 and hmF2) with auto-scaled parameters that were obtained via the ARTIST5002 program. We classified five cases in terms of the erroneous scaling performed by the program. The results of the comparison indicate that the average differences with respect to foF2 and hmF2 between the two methods approximately correspond to 0.03 MHz and 4.1 km, respectively with corresponding standard deviations of 0.12 MHz and 9.58 km. Overall, 36 % of the auto-scaled results differ from the manually scaled results by the first decimal number. Therefore, future studies should be aware of the quality of auto-scaled parameters obtained via ARTIST5002. Hence, the results of the study recommend the use of manually scaled parameters (if available) for any serious applications.

DESIGN CONSIDERATION FOR HIGH STABILITY TELESCOPE STRUCTURE

  • Lee, Deog-Gyu;Jang, Hong-Sul;Lee, Eung-Shik;Jung, Dae-Jun;Lee, Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.225-228
    • /
    • 2005
  • Telescope structure based on Korsch type optical layout was suggested for a large aperture optical system. Korsch type optical layout is regarded as providing wide field of view and no color aberration for which high resolution space cameras greatly demand. For the suggested Korsch type telescope structure, two folding mirrors are adopted, firstly to provide for the refocusing device mounting plane on the second fold mirror assembly, secondly by double folding the light path to concisely confine focal plane assembly within the perimeter of the tube. Optical layput design and corresponding support structure design were attained.

  • PDF

Terrain Slope Estimation Methods Using the Least Squares Approach for Terrain Referenced Navigation

  • Mok, Sung-Hoon;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain map over the region, determined by position error covariance. It is shown that the method could provide a more accurate solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after determining which of the filter properties is more significant at each mission.

Wide band prototype feedhorn design for ASTE focal plane array

  • Lee, Bangwon;Gonzales, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2016
  • KASI and NAOJ are making collaborating efforts to implement faster mapping capability into the new 275-500 GHz Atacama Submillimeter Telescope Experiment focal plane array (FPA). Feed horn antenna is one of critical parts of the FPA. Required fractional bandwidth is almost 60 % while that of traditional conical horn is less than 50 %. Therefore, to achieve this wideband performance, we adopted a horn of which the corrugation depths have a longitudinal profile. A profiled horn has features not only of wide bandwidth but also of shorter length compared to a linear-tapered corrugated horn, and lower cost fabrication with less error can be feasible. In our design process the flare region is represented by a cubic splined curve with several parameters. Parameters of the flare region and each dimension of the throat region are optimized by a differential evolution algorithm to keep >20 dB return loss and >30 dB maximum cross-polarization level over the operation bandwidth. To evaluate RF performance of the horn generated by the optimizer, we used a commercial mode matching software, WASP-NET. Also, Gaussian beam (GB) masks to far fields were applied to give better GB behavior over frequencies. The optimized design shows >23 dB return loss and >33 dB maximum cross-polarization level over the whole band. Gaussicity of the horn is over 96.6 %. The length of the horn is 12.5 mm which is just 57 % of the ALMA band 8 feed horn (21.96 mm).

  • PDF

Development of Nomographs for the Evaluation of Lighting Energy Performance in a Semi-infinite Office Space (중규모 사무공간에서 조명에너지 성능평가를 위한 노모그래프 개발에 관한 연구)

  • Kim, Han-Seong;Ko, Dong-Hwan;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2003
  • The purpose of this study was to analyze daylighting performance in a semi-infinite size office space for lighting energy conservation. DOE2.1E was used for simulations for the model space of $12\times12\times2.6m$. Nomographs were developed which could simulate work plane illuminance, glare index, energy consumption rate and energy reduction rate for daylighting design. Major results of simulations are as follows ; 1) When blinds facing south were installed, 43% of workplane illuminance diminished, but the flare index didn't exceed the recommended max-glare value. 2) In a semi-infinite office space facing south. energy consumption rate in the case space of 500 lux workplane illuminance is larger then case space of 300 lux workplane illuminance. Therefore, energy reduction rate is increased when the semi-infinite office faces south and naintains 300 lux workplane illuminance level.

A Study on the Remodeling Construction Execution Strategy of General Hospitals in Korea (국내 종합병원의 리모델링 공사수행전략에 관한 연구)

  • Kim, Ha-Jin;Yang, Nae-Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 2005
  • The construction can proceed in different ways according to the acquired profitability of the hospital during the construction and to the features of departments or areas. This study is an analysis of remodeling construction processes to resolve major tasks of remodeling. The remodeling strategies gained from this study can be summed up as follows: 1) Remodeling work in hospitals involves the acquire relocation of space through extensive area renovations and then moving back to the space, and lastly working on the empty space. Thus, it is more advantageous in terms of construction work to demolish the existing buildings than to acquire the relocation space through extensions or renovations. That is, demolition after the maximum utilization of the existing buildings is the most desirable in terms of space availability. 2) The construction methods for remodeling are two: a method of carrying out construction by dividing the plane areas into several individual ones and of working on it floor by floor. In case of ward areas, and the outpatient area, the construction proceeds after securing the relocation space and partially setting construction areas in order to minimize the decrease in profitability due to the smaller number of beds and treatment rooms during construction. If the outpatient diagnosis/ treatment area and the supply area relocate together with the ward areas, there may be extra expenses. Thus, doing construction by area, while partially operating those areas or after relocating the whole areas.

  • PDF

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L.;Kim, Sungsoo S.;Shin, Jihye;Chun, Kyungwon;Park, So-Myoung;Lee, Joowon;Minh, Young Chol
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.117-123
    • /
    • 2020
  • We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

A Study on the Plane Spatial Characteristics of Modern Hanok in the Jeonju Hanok Village using Space Syntax (Space Syntax를 응용한 전주한옥마을 근대한옥의 평면공간특성에 관한 연구)

  • Kim, Yun-Sang;Shin, Byeong-Uk;Nam, Hae-Kyeong
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.4
    • /
    • pp.35-44
    • /
    • 2018
  • The residential space of humans has continuously developed to the most suitable form considering the natural and social environment. Based on this, it has become a unique residential architectural culture of an area. In the architectural field, the space of residential structures is being categorized topological aspect and the quantitative indicators are being calculated to conduct an objective comparative analysis of the characteristics of space by regional groups and individual rooms. Hence, the purpose of this study is to investigate the characteristics of the spatial composition of Hanok which a modern residential structure connecting traditional residential architecture with modern residential architecture. Hanok generally had a similar spatial composition to that of the traditional Hanok. However, a minor change was spotted due to it being a modern Hanok. It was objectively determined through the environmental characteristics that this form of spatial composition is due to the influence of the Japanese colonial era as the Western lifestyle of inner space centered lifestyle was introduced in the same period that the Jeonju Hanok was mostly created. The sequence of topological spatial gene of Hanok in Jeonju Hanok Village appeared in the order of Toetmaru - Madang - Anbang - Geonneonbang - Meorit bang - Kitchen.

The Study on Selection of human Model for Controllability Evaluation According to Working Postures

  • Kim, Do-Hoon;Park, Sung-Joon;Lim, Young-Jae;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.437-444
    • /
    • 2012
  • The purpose of this study was to suggest appropriate human model for ergonomic evaluation considering working postures on 3D space. Background: Traditionally extreme design rules have been widely utilized at the stage of designing products. Body size of 5th percentile and 95th percentile in stature has been generally selected for controllability and clearance evaluation, respectively. However, these rules had limitations in reflecting working posture in ergonomic evaluation. Method: In order to define working posture on 3D space, not only sagittal plane but also lateral plane was considered. Kinematic linkage body model was utilized for representation of working posture. By utilizing the anthropometric data of 2,836 South Korean male populations, the point cloud for end points of linkage models was derived. The individuals who were lacking in certain controllability were selected as human models for the evaluation. Result: In case of standing posture it was found that conventional approach is proper for all controllability evaluations. Contrary to standing posture, tall people had less controllability on control location below shoulder point in sitting posture. Conclusion: From the derived proper range on controllability, ergonomic evaluation rule was suggested according to working posture especially in standing and sitting. Application: The results of the study are expected to aid in selection of appropriate human model for ergonomic evaluation and to improve the usability of products and work space.