• Title/Summary/Keyword: Korea Science and Engineering Foundation

Search Result 296, Processing Time 0.026 seconds

An Analysis on Research Funding of Geosciences in Korea (우리나라 지질자원분야 연구예산 지원에 관한 분석연구)

  • Kim, Seong-Yong;Heo, Chul-Ho;Min, Tae-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.815-825
    • /
    • 2007
  • This study analyzed trends in geoscientific research funding provided by the Korea Science and Engineering Foundation (KOSEF) and examined strategies to promote geoscientific research. The strengths of geoscientific research in South Korea include the excellent academic quality of researchers, established research infrastructure, and inter-disciplinary research. Weaknesses include insufficient leadership in related societies and institutes, insufficient research productivity, and the exclusion of the field from nationally supported large-scale research projects. Opportunities for expanded research include environmental issues, the sustainable use of natural resources, the promotion of international research cooperation, and the initiation of national efforts to find solutions for regional problems. However, growth in the geosciences is threatened by prioritized investment in fields such as biotechnology, nanoscience, and information technology, a dismissive attitude toward the growth of basic sciences, and an increased demand for projects with visible economic and societal impacts. In terms of funding, group-based programs receive more support than individual-based programs. Between 1978 and 2006, KOSEF invested 1,744 billion won ($1.873 billion US) in a total of 46,748 basic research projects. Of this amount, 62.1 billion won ($66.7 million US) was allocated to 1,901 projects in the geosciences, which was roughly 2.6-10.6% of the money available in a given year. These funds were used to support research and development, the development and maintenance of necessary infrastructure, and the education and training of geoscientists.

Quantitative Definitions of Collaborative Research Fields in Science and Engineering

  • Schwartz, Mathew;Park, Kwisun;Lee, Sung-Jong
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.251-274
    • /
    • 2016
  • Practical methodology for categorizing collaborative disciplines or research in a quantitative manner is presented by developing a Correlation Matrix of Major Disciplines (CMMD) using bibliometric data collected between 2009 and 2014. First, 21 major disciplines in science and engineering are defined based on journal publication frequency. Second, major disciplines using a comparing discipline correlation matrix is created and correlation score using CMMD is calculated based on an analyzer function that is given to the matrix elements. Third, a correlation between the major disciplines and 14 research fields using CMMD is calculated for validation. Collaborative researches are classified into three groups by partially accepting the definition of pluri-discipline from peer review manual, European Science Foundation, inner-discipline, inter-discipline and cross-discipline. Applying simple categorization criteria identifies three groups of collaborative research and also those results can be visualized. Overall, the proposed methodology supports the categorization for each research field.

Ultimate strength performance of Northern sea going non-ice class commercial ships

  • Park, Dae Kyeom;Paik, Jeom Kee;Kim, Bong Ju;Seo, Jung Kwan;Li, Chen Guang;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.613-632
    • /
    • 2014
  • In the early design stage of ships, the two most important structural analyses are performed to identify the structural capacity and safety. The first step is called global strength analysis (longitudinal strength analysis or hull girder strength analysis) and the second step is local buckling analysis (stiffened panel strength analysis). This paper deals with the ultimate strength performance of Arctic Sea Route-going commercial ships considering the effect of low temperature. In this study, two types of structural analyses are performed in Arctic sea conditions. Three types of ship namely oil tanker, bulk carrier and container ship with four different sizes (in total 12 vessels) are tested in four low temperatures (-20, -40, -60 and $-800^{\circ}C$), which are based on the Arctic environment and room temperature ($20^{\circ}C$). The ultimate strength performance is analysed with ALPS/HULL progressive hull collapse analysis code for ship hulls, then ALPS/ULSAP supersize finite element method for stiffened panels. The obtained results are summarised in terms of temperature, vessel type, vessel size, loading type and other effects. The important insights and outcomes are documented.

A Simulator for Radar Performance Evaluation in a Far-Field Test Range (원방계 조건하에서의 레이다 성능평가를 위한 시뮬레이터)

  • Kil, Min-Young;Myung, Noh-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • In this paper, a simulator for radar performance evaluation in a far-field test range is proposed, which can forecast maximum detection range, minimum detection range, number of test trials, resolution (range, azimuth, elevation) with input parameters before radar performance test and process results after. The proposed simulator is designed by Microsoft Foundation Class (MFC) of VC++ 6.0.

  • PDF

A Study on the Interdisciplinary Structure of Individual Research (개인연구의 학제특성에 관한 연구)

  • 송충한
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.1
    • /
    • pp.16-27
    • /
    • 1999
  • This paper intends to clear up the conte31t of the interdisciplinary nature of individual researches. First, the interdisciplinary character of individual research was analyzed. Approximately 40% of individual research projects supported by Korea Science and Engineering Foundation has the interdisciplinary nature. Second, there are close connections among research fields in individual research projects. Every research field needs the inflow of knowledge from other fields and supports other research fields as well. The interrelation among various research fields indicates the importance of the balanced development in all science and engineering fields.

  • PDF

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

A Study of Entrepreneurship Education of University in Science and Engineering for Vitalization of Technology-based Startup (기술기반 창업 활성화를 위한 이공계 창업교육에 관한 연구)

  • Kim, Sunwoo;Ko, Hyuk-Jin;Lee, Yunseok
    • Journal of Engineering Education Research
    • /
    • v.18 no.2
    • /
    • pp.3-7
    • /
    • 2015
  • Entrepreneurship has been considered as an engine to lead economy, which has been resulting in a focus on entrepreneurship education to promote entrepreneurship. This paper focuses on science and engineering students, and analyzes the relationship between entrepreneurship education and entrepreneurship level. The response results of 950 students (34 universities) were as follows. First, the entrepreneurship level of science and engineering students are a little high but not as significant more than non-science and engineering. Second, science and engineering students have an impact on the level of entrepreneurship about entrepreneurship courses. Third, entrepreneurship courses and clubs have an effect on entrepreneurship level. As a conclusion, we have to improve the quality of entrepreneurship education, recognize startup as a credit, and build up entrepreneurship education ecosystem through the local area network.

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.