• Title/Summary/Keyword: Korea Research Reactor

Search Result 2,094, Processing Time 0.034 seconds

RELATIONSHIP BETWEEN RADIATION INDUCTED YIELD STRENGTH INCREMENT AND CHARPY TRANSITION TEMPERATURE SHIFT IN REACTOR PRESSURE VESSEL STEELS OF KOREAN NUCLEAR POWER PLANTS

  • Lee, Gyeong-Geun;Lee, Yong-Bok;Kwon, Jun-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.543-550
    • /
    • 2012
  • The decrease in the fracture toughness of ferritic steels in a reactor pressure vessel is an important factor in determining the lifetime of a nuclear power plant. A surveillance program has been in place in Korea since 1979 to assess the structural integrity of RPV steels. In this work, the surveillance data were collected and analyzed statistically in order to derive the empirical relationship between the embrittlement and strengthening of irradiated reactor pressure vessel steels. There was a linear relationship between the yield strength change and the transition temperature shift change at 41 J due to irradiation. The proportional coefficient was about $0.5^{\circ}C$/MPa in the base metals (plate/forgings). The upper shelf energy decrease ratio was non-linearly proportional to the yield strength change, and most of the data lay along the trend curve of the US results. The transition regime temperature interval, ${\Delta}T_T$, was less than the US data. The overall change from irradiation was very similar to the US results. It is expected that the results of this study will be applied to basic research on the multiscale modeling of the irradiation embrittlement of RPV materials in Korea.

Effect of pH on Phase Separated Anaerobic Digestion

  • Jung, Jin-Young;Lee, Sang-Min;Shin, Pyong-Kyun;Chung, Yun-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.456-459
    • /
    • 2000
  • A pilot scale experiment was performed for a year to develop a two-phase anaerobic process for piggery wastewater treatment (COD: 6,000mg/L, BOD: 4,000mg/L, SS: 500mg/L, pH 8.4, alkalinity 6,000mg/L). The acidogenic reactor had a total volume of 3㎥, and the methanogenic reactor, an anaerobic up-flow sludge filter, combining a filter and a sludge bed, was also of total volume 3㎥(1.5㎥ of upper packing material). Temperatures of the acidogenic and methanogenic reactors kept at 20$^{\circ}C$ and 35$^{\circ}C$, respectively. When the pH of the acidogenic reactor was controlled at 6.0-7.0 with HCl, the COD removal efficiency increased from 50 to 80% over a period of six months, and as a result, the COD of the final effluent fell in the range of 1,000-1,500 mg/L. BOD removal efficiency over the same period was above 90%, and 300 to 400 mg/L was maintained in the final effluent. The average SS in the final effluent was 270 mg/L. The methane production was 0.32㎥ CH$_4$/kg COD(sub)removed and methane content of the methanogenic reactor was high value at 80-90%. When the pH of the acidogenic reactor was not controlled over the final two months, the pH reached 8.2 and acid conversion decreased compared with that of pH controlled, while COD removal was similar to the pH controlled operation. Without pH control, the methane content in the gas from methanogenic reactor improved to 90%, compared to 80% with pH control.

  • PDF

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.

Food Waste Composting by Soil Microbial Inoculators (토양미생물제제에 의한 음식물폐기물의 퇴비화 검토)

  • Bae, Il-sang;Jung, Kweon;Jeon, Eun-Mi;Kim, Gwang-Jin;Lee, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.160-167
    • /
    • 2000
  • This study was performed to evaluate efficiency of soil microbial inoculator for active composting of food waste. In addition the number of microorganisms in roil microbial inoculator and the effect of seeding in the process of composting were investigated. food waste samples collected from a refectory were analyzed for physical-chemical properties. The samples were adjusted to moisture content of 65% by saw dust and seeded with soil microbial inoculator of 10% by the weight in case of reactor B. The number of microorganisms, aerobic bacteria, actinomyces, yeast, and fungi in soil microbial inoculator were over $2.98{\times}10^9/g$, $3.93{\times}10^7/g$, $1.21{\times} 10^5/g$, and $5.79{\times}10^7/g$, respectively. During the process of composting, the highest temperatures were $63.4^{\circ}C$ at reactor A(unseeded control)after 10 days and $66.8^{\circ}C$ at reactor B(seeded compost) after 4 days. The pH values of reactor A and B rapidly increased after 3 days and after first few days during composting period, respectively. The highest $CO_2$ concentrations were 6.1%(after 10 days) and 10.8%(afer 4 days) in reactor A and B, respectively. The degradation rates of organic matter(rd) between reactor A and B increased by 17.1% and 64.5%, respectively Consequently, the effects of Inoculation on comporting parameter such as temperature increasing, pH change, chemical properties, and the degradation rates of organic matter(rd) were higher in seeded compost than in unseeded control.

  • PDF

THERMAL-HYDRAULIC TESTS AND ANALYSES FOR THE APR1400'S DEVELOPMENT AND LICENSING

  • Song, Chul-Hwa;Baek, Won-Pil;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.299-312
    • /
    • 2007
  • The program on thermal-hydraulic evaluation by testing and analysis (THETA) for the development and licensing of the new design features in the APR1400 (Advanced Power Reactor-1400) is briefly introduced with a presentation on the research motivation and typical results of the separate effect tests and analyses of the major design features. The first part deals with multi-dimensional phenomena related to the safety analysis of the APR1400. One research area is related to the multidimensional behavior of the safety injection (SI) water in a reactor pressure vessel downcomer that uses a direct vessel injection type of SI system. The other area is associated with the condensation of steam jets and the resultant thermal mixing in a water pool; these phenomena are relevant to the depressurization of a reactor coolant system (RCS). The second part describes our efforts to develop new components for safety enhancements, such as a fluidic device as a passive SI flow controller and a sparger to depressurize the RCS. This work contributes to an understanding of the new thermal-hydraulic phenomena that are relevant to advanced reactor system designs; it also improves the prediction capabilities of analysis tools for multi-dimensional flow behavior, especially in complicated geometries.

Assessment of Nuclear Characteristics of NAA #1 Irradiation Hole in HANARO Research Reactor for Application of the $K_0$-NAA Methodology

  • Moon, Jong-Hwa;Kim, Sun-Ha;Chung, Yong-Sam;Dung, Ho-Mahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.566-573
    • /
    • 2002
  • Neutron activation analysis based on $textsc{k}$$_{o}$-standardization method# ($textsc{k}$o-NAA) is Com as one of the most remarkable progresses of the NAA with advantages of experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions, and suitability for computerization. This study was carried out to determine the reactor neutron spectrum parameters, i.e. $\alpha$ and f as the main factors of irradiation quality at NAA #1 irradiation hole on HANARO research reactor, to evaluate peak detection efficiency of the gamma-ray spectrometer for the use in the $textsc{k}$$_{o}$ experiments and to compare the measured concentration results with the certified values of some SRMs applying the experimentally determined to-parameters.ers.

Buckling Characteristics of the KALIMER-150 Reactor Vessel Under Lateral Seismic Loads and the Experimental Verification Using Reduced Scale Cylindrical Shell Structures

  • Koo Gyeong-Hoi;Lee Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.537-546
    • /
    • 2003
  • The purpose of this paper is to investigate the buckling characteristics of a conceptually designed KALIMER-150(Korea Advanced LIquid MEtal Reactor, 150MWe) reactor vessel and verify the buckling behavior using the reduced scale cylindrical shell structures. To do this, nonlinear buckling analyses using finite element method and evaluation formulae are carried out. From the results, the KALIMER-150 reactor vessel exhibits a dominant bending buckling mode and is significantly affected by the plastic behavior. The interaction effects with the vertical seismic load cause the lateral buckling load to be slightly decrease. From the results of the buckling experiments using reduced scaled cylindrical shell structures, it is verified that the buckling modes such as pure bending, pure shear, and mixed(bending plus shear) mode clearly appear under a lateral load corresponding to the slenderness ratio of cylinder.

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

A Study on Physical Dechlorination of Mixed Plastics using Screw Reactor (스크류반응기를 이용한 혼합플라스틱의 물리적 탈염소에 관한 연구)

  • Kim, Sang-Guk;Eom, Yu-Jin;Chung, Soo-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.83-96
    • /
    • 2005
  • PVC is the thermoplastic offering excellent material properties. PVC is used in wide variety of applications, however, it causes environmental problems when it is discarded because of its high chlorine content. Since dechlorination reaction of PVC is taking place relatively low temperature compared to the pyrolysis temperature of plastics, study on the dechlorination reaction has been carried out as a pre-treatment process. Twin screw reactor which shows excellent mixing capabilities is employed. Experimental variables are first and second reactor temperature, PVC content in mixed plastics, viscosity of mixed plastics, feeding rate, rotational speed of the second reactor. Over 90% of dechlorination rate can be obtained under proper operation conditions. Chlorine gas evolved from reactor is absorbed in water and can be recovered as a hydrochloric acid. Analysis had been done on chlorine flows by taking material balance over reactor.

  • PDF

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.