• Title/Summary/Keyword: Korea Marine Biodiversity Information System

Search Result 8, Processing Time 0.155 seconds

Development of the Korea Marine Biodiversity Information System -Focus on the Establishment of the Korea Maine Species Inventory- (해양 생물다양성 정보시스템 개발 -한국 해양생물 종 목록 수립을 중심으로-)

  • Park, Soo-Young;Kim, Sung-Dae;Lee, Youn-Ho;Pae, Se-Jin;Park, Heung-Sik;Kim, Choong-Gon
    • Ocean and Polar Research
    • /
    • v.29 no.3
    • /
    • pp.273-282
    • /
    • 2007
  • For an efficient management and utilization of marine biodiversity information, we made an attempt to develop the Korea Marine Biodiversity Information System (KoMBIS), building a species name inventory of Korea marine organisms. The inventory includes 17 organism groups: phytoplankton, zooplankton, algae and halophyte, sponges, cnidarians, rotifers, nematodes, bryozoans, brachiopods, molluscs, echiurans, annelids, arthropods, echinoderms, urochordates and fish. The species names were collected from 37 different references and reviewed for validity by taxonomists, which resulted in 9,798 valid names in addition to 1,845 synonyms. The Korea marine species inventory is the first one of this kind, for previous Korean species name inventories were mostly composed of terrestrial and freshwater organisms. KoMBIS, the information system developed, contains not only the species name but also information on morphological and ecological characteristics such as distribution, DNA barcode, and references. This system is convenient for the inputting of new data and servicing users through the internet, so that management and utilization of the biodiversity information is more efficient. Linking the DNA barcode data with species information provides an objective measure for identification of a species, which accommodates the recommendation of Consortium for the Barcode of Life, and makes the Korea marine biodiversity information compatible with international databases. Considering the frequent exchange of marine organisms internationally via ballast water and such issues as climate change, this information system will be useful in many areas of marine biodiversity.

The Present of Convention on Biological Diversity Maritime Agenda (해양관련 생물다양성협약 의제 소개)

  • Back, Jinwook;Lee, Kanghyun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.397-402
    • /
    • 2014
  • In June 1992, Convention on Biological Diversity (CBD) was concluded by 158 countries in Rio de Janeiro. And now, 194 member nations are participating in discussions for their own profit. Recently, Nagoya Protocol regarding Access to genetic resources and Benefit-Sharing (ABS) was approved and took effect from October $12^{th}$, 2014. Thus, it is important to understand the impact of CBD and ABS functioning on researchers studying marine biodiversity. Until now, in the previous Conference of the parties to the Convention on Biological Diversity, the interest towards researching marine and marine living resources was relatively low, and accordingly, the discussions regarding marine and marine living resources were delayed. However, in the $12^{th}$ Pyeongchang Conference of the Parties to the Convention on Biological Diversity, the arguments concerning Ecologically or Biologically Significant marine Areas (EBSA) and the other marine related issues were discussed. Although, South Korea has not yet officially joined Nagoya Protocol, however the consultations in regard to Prior and Informed Consent (PIC), Mutually Agreed Terms (MAT) and Global Multilateral Benefit-Sharing Mechanism (GMBSM) were discussed. We belive that as a possessing nation of biological resources, South Korean government authorities should revise their management systems protocol and regulations concerning domestic biological resources, in order to strengthen the information system and help academia and industry to utilize the biological resources abroad easily and effectively.

Development of an Integrated DataBase System of Marine Geological and Geophysical Data Around the Korean Peninsula (한반도 해역 해양지질 및 지구물리 자료 통합 DB시스템 개발)

  • KIM, Sung-Dae;BAEK, Sang-Ho;CHOI, Sang-Hwa;PARK, Hyuk-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.47-62
    • /
    • 2016
  • An integrated database(DB) system was developed to manage the marine geological data and geophysical data acquired from around the Korean peninsula from 2009 to 2013. Geological data such as size analysis data, columnar section images, X-ray images, heavy metal data, and organic carbon data of sediment samples, were collected in the form of text files, excel files, PDF files and image files. Geophysical data such as seismic data, magnetic data, and gravity data were gathered in the form of SEG-Y binary files, image files and text files. We collected scientific data from research projects funded by the Ministry of Oceans and Fisheries, data produced by domestic marine organizations, and public data provided by foreign organizations. All the collected data were validated manually and stored in the archive DB according to data processing procedures. A geographic information system was developed to manage the spatial information and provide data effectively using the map interface. Geographic information system(GIS) software was used to import the position data from text files, manipulate spatial data, and produce shape files. A GIS DB was set up using the Oracle database system and ArcGIS spatial data engine. A client/server GIS application was developed to support data search, data provision, and visualization of scientific data. It provided complex search functions and on-the-fly visualization using ChartFX and specially developed programs. The system is currently being maintained and newly collected data is added to the DB system every year.

Korea Barcode of Life Database System (KBOL)

  • Kim, Sung-Min;Kim, Chang-Bae;Min, Gi-Sik;Suh, Young-Bae;Bhak, Jong;Woo, Tae-Ha;Koo, Hye-Young;Choi, Jun-Kil;Shin, Mann-Kyoon;Jung, Jong-Woo;Song, Kyo-Hong;Ree, Han-Il;Hwang, Ui-Wook;Park, Yung-Chul;Eo, Hae-Seok;Kim, Joo-Pil;Yoon, Seong-Myeong;Rho, Hyun-Soo;Kim, Sa-Heung;Lee, Hang;Min, Mi-Sook
    • Animal cells and systems
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • A major concern regarding the collection and storage of biodiversity information is the inefficiency of conventional taxonomic approaches in dealing with a large number of species. This inefficiency has increased the demand for automated, rapid, and reliable molecular identification systems and large-scale biological databases. DNA-based taxonomic approaches are now arguably a necessity in biodiversity studies. In particular, DNA barcoding using short DNA sequences provides an effective molecular tool for species identification. We constructed a large-scale database system that holds a collection of 5531 barcode sequences from 2429 Korean species. The Korea Barcode of Life database (KBOL, http://koreabarcode.org) is a web-based database system that is used for compiling a high volume of DNA barcode data and identifying unknown biological specimens. With the KBOL system, users can not only link DNA barcodes and biological information but can also undertake conservation activities, including environmental management, monitoring, and detecting significant organisms.

Metagenomic Approach on the Eukaryotic Plankton Biodiversity in Coastal Water of Busan (Korea) (부산 연안역의 진핵플랑크톤 종다양성에 대한 메타게놈 분석 연구)

  • Yoon, Ji-Mie;Lee, Jee-Eun;Lee, Sang-Rae;Rho, Tae-Keun;Lee, Jin-Ae;Chung, Ik-Kyo;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.59-75
    • /
    • 2012
  • The species composition of plankton is essential to understand the material and energy cycling within marine ecosystem. It also provides the useful information for understanding the properties of marine environments due to its sensitivity to the physicochemical characteristics and variability of water masses. In this study we adopted metagenomics to evaluate eukaryotic plankton species diversity from coastal waters off Busan. Characteristics of water masses at sampling sites is expected to be very complex due to the mixing of various water masses; Nakdong River runoff, Changjiang diluted water (CDW), South Sea coastal water, and Tsushima warm current. 18S rDNA clone libraries were constructed from surface waters at the three sites off Busan. Clone libraries revealed 94 unique phylotypes from 370 clones; Dinophyceae(42 phylotypes), Ciliophora(15 phylotypes), Bacillariophyta(7 phylotypes), Chlorophyta(2 phylotypes), Haptophyceae(1 phylotype), Metazoa(Arthropoda( 17 phylotypes), Chaetognatha(1 phylotypes), Cnidaria(2 phylotypes), Chordata(1 phylotype)), Rhizaria (Acantharea(2 phylotypes), Polycystinea(1 phylotype)), Telonemida(1 phylotype), Fungi(2 phylotypes). The difference in species diversity at the closely located three sites off Busan may be attributed to the various physicochemical properties of water masses at these sites by the mixture of water masses of various origins. Metagenomic study of species composition may provide useful information for understanding marine ecosystem of coastal waters with various physicochemical properties in the near feature.

Development of a Data Reference Model for Joint Utilization of Biological Resource Research Data (생물자원 연구데이터의 공동 활용을 위한 데이터 참조모델 개발)

  • Kwon, Soon-chul;Jeong, Seung-ryul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.135-150
    • /
    • 2018
  • The biological resources research data around the world are not only very critical themselves but should be shared and utilized. Up to now, the biological resources have been compiled and managed individually depending on the purpose and characteristics of the study without any clear standard. So, in this study, the data reference model would be suggested which is applicable in the phase ranging from the start of the construction of the information system and which can be commonly used. For this purpose, the data model of the related information system would be expanded based on the domestic and foreign standards and data control policy so that the data reference model which can be commonly applicable to individual information system would be developed and its application procedure would be suggested. In addition, for the purpose of proving the excellence of the suggested data reference model, the quality level would be verified by applying the Korgstie's data model evaluation model and its level of data sharing with the domestic and foreign standards would be compared. The test results of this model showed that this model is better than the conventional data model in classifying the data into 4 levels of resources, target, activities and performances and that it has higher quality and sharing level of data in the data reference model which defines the derivation and relation of entity.

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Estimation of the Total Terrestrial Organic Carbon Flux of Large Rivers in Korea using the National Water Quality Monitoring System (수질측정망을 이용한 국내 대하천 하구를 통한 총유기탄소 유출량 산정과 비교)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.549-556
    • /
    • 2017
  • Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River ($18.0{\times}10^9gC\;yr^{-1}$)>>Geum River ($5.9{\times}10^9gC\;yr^{-1}$)>Yeongsan River ($2.6{\times}10^9gC\;yr^{-1}$)>Sumjin River ($2.0{\times}10^9gC\;yr^{-1}$)>>Tamjin River ($0.2{\times}10^9gC\;yr^{-1}$). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.